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Wheat growth and yield response were evaluated in a greenhouse experiment using two major soils, 
Nitosols and Vertisols. Sorption capacities of the soils and crop response were employed to determine 
the availability of nutrients in the two soils. Eight fertilizer treatments (Optimum (Opt.),Optimum-N, 
Optimum-P,Optimum-K,Optimum-S,Optimum-B,Optimum-Zn and control) in Nitosols and six fertilizer 
treatments (Optimum, Optimum-N, Optimum-P, Optimum-S, Optimum-B and control) in Vertisols were 
arranged in completely randomized design (CRD) with five replications using wheat variety (Digalu) as a 
test crop. Deficiency in total N, available P, S and B was observed in the two soils. Besides, K and Z in 
Nitisols were less than three times the critical values. The result indicated that applications of optimum 
fertilizer significantly (P<0.05) increased plant height, spike length, number of seeds per spike, straw 
yield, grain yield and total biomass yield. Similarly, it resulted in an increase in grain yield of 75 and 
68% over the controls in Nitosols and vertisols respectively. Omission of N, P, S, and B were resulted in 
grain yield reduction by 65.6, 23.4, 4.7, and 3.1% in Nitosols and by 69.4, 22.4, 14.1, and 15.3% in 
vertisols. Omission of K and Zn in Nitisols also causes up to 9.4 and 4.7% grain yield reduction. Thus, 
external supplies of these nutrients could be recommended for optimum production of wheat. 
 
Key words: Grain yield, Nitisols, nutrient concentrations in plants, soil nutrient contents, Vertisols. 

 
 
INTRODUCTION 

 
Cereal crops are the largest group in terms of their share 
in area cultivated, production, productivity and 
consumption in Ethiopia (CSA, 2018). Wheat is one of 
the major cereals widely grown in the highlands of 
Ethiopia.  The  country   is   the   second    largest   wheat 

producer in sub-Saharan Africa, next to South Africa 
(ECEA, 2008). Wheat ranks fourth after teff (Eragrostis 
tef), maize (Zea mays) and sorghum (Sorghum bicolor) in 
area coverage and total production (CSA, 2018). Wheat 
production   has    grown   significantly   following  several 
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government programs and initiatives implemented to 
drive agricultural growth and food security in the country. 
Ethiopian wheat production is estimated at 4.5 million 
tonnes in 2018/19 and almost 1.65 million hectares were 
dedicated to wheat cultivation (GAIN, 2019). According to 
Global Agricultural Information Network (GAIN, 2019) 
report yields are close to 2.7 tons per hectare. However 
production still falls short of meeting domestic needs and 
the country remains a net importer of wheat. 

Soil fertility depletion is a major constraint to 
agricultural production and food security worldwide, 
particularly in wheat and rice production areas of the 
developing world (Tan et al., 2005). Similarly, one of the 
basic limiting factors for cereal crop yield including that of 
wheat in Ethiopia is poor soil fertility (Louis, 2010). The 
problem is more serious in the highlands where most of 
the human and livestock population is inhabited (Hailu, 
2010). Nitisols and Vertisols are among the most 
extensive agricultural soils in the Ethiopian highlands but 
soil degradation threatens their productive capacity 
(Hillette et al., 2015; Eyasu, 2017). The most recent 
survey indicates the extent of Nitisols coverage is about 
one million hectares accounting for 31% of the 
agricultural lands in the Ethiopian highlands (Elias, 2016). 
Nitisols are among the most productive agricultural soils 
along with Vertisols, Luvisols, and Planosols (Stocking, 
1988).  Vertisols also cover 13 million hectares of land 
mass, while more than half (8.6 million ha) of the 
Vertisols are found in the central highlands of the country 
(Debele, 1985; Jutzi et al., 1987). Ethiopia ranks third in 
Vertisols abundance in Africa after Sudan and Chad 
(Jutzi et al., 1987). In addition to the high P fixing 
characteristics of Vertisols (Abunyewa et al., 2004), lack 
of response to P application on central highland Vertisols 
of Ethiopia may be due to deficiency of nutrients other 
than P. 

Previously, only nitrogen (N) and phosphorus (P) were 
considered to be the limiting nutrients in Vertisols of 
Ethiopia (Mamo et al., 1988). However, many soils in the 
highlands of Ethiopia are poor in available plant nutrients 
and organic matter content (Mamo et al., 2002). Hence, 
the national gross nutrient depletion rate was estimated 
to be -122 kg N ha

−1
, −13 kg P ha

−1
 and −82 kg K ha

−1
 

(Haileslassie et al., 2005). The field level nutrient 
balances on Nitisols from southern Ethiopia (−102, −45 
and −67 kg ha

−1 
for N, P and K respectively) are even  
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more threatening (Elias, 2002). Soil erosion also 
contributes significantly to soil fertility depletion, as the 
rates of losses are estimated to be 130 tons ha

−1
 for 

cultivated fields, which is one of the highest in Africa 
(FAO, 1986; Elias, 2016).  Nitrogen and phosphorus are 
not the only yield constraining factors, but others such as 
S, Zn, B, Fe, Cu and K-deficiencies are also common soil 
fertility problems due to the low inherent soil fertility 
status and/or poor management (Tegbaru. 2015). Mining 
of nutrients due to low and unbalanced fertilizer 
application favored the emergence of multi nutrient 
deficiencies in Ethiopian soils (Desta, 1984, Abiye et al., 
2004). The recent national soil fertility survey conducted 
by Ethiopian Agricultural Transformation Agency (ATA)  
revealed that in addition to nitrogen and phosphorus, 
potassium, sulfur, and zinc deficiencies are widespread in 
Ethiopian soils, while some soils are also deficient in 
boron and copper (ATA, 2013). These all potentially limit 
crop productivity despite continued use of nitrogen and 
phosphorus fertilizers as blanket recommendation over 
decades.  

The nutrients usually applied as a fertilizer for crop 
production in Ethiopia are nitrogen and phosphorus in the 
form of Urea and DAP (Hillette et al., 2015). However, if 
the level of any one of the other essential nutrients falls 
below the critical level, the yield response to nitrogen and 
phosphorus would be seriously affected. Therefore, in 
order to set priorities among the different plant nutrients, 
it is important to identify the status of the limiting nutrients 
in various soils. Thus, this research was carried out to 
evaluate wheat growth and yield response to most 
essential nutrients under Nitisols and Vertisols from 
central highlands of Ethiopia. 
 
 
MATERIALS AND METHODS  
 
Description of the study area 
 
Pot experiment was conducted under greenhouse conditions at 
National Soil Testing Center in Addis Ababa, Ethiopia using soil 
samples collected from Wolmera district of Oromia Regional State, 
central Ethiopia. The soils used for the study were classified as 
Nitisol and Vertisol, covering large production areas of central 
highlands of Ethiopia (Debele, 1985; Jutzi et al., 1987; Elias, 2016). 
Wolmera is one of the districts in West Shewa Zone of Oromia 
Regional State, Ethiopia (Figure 1). It is located at about 30 km 
west of Addis Ababa on the main road to Ambo city. It is situated at 
an altitude of 2000 to 3380 m above sea level. The area receives 
an average annual rainfall of 1067 mm and average temperature of 
18°C (BoA, 2013). 

     
Soil sampling, preparation and analysis 
 
Soil samples (0-20 cm depth) were randomly taken from 40 
sampling points, 20 each for Nitisols and Vertisols using an auger. 
The soil samples were bulked into two composite samples, one 
each for Nitisols and Vertisols. The composite samples were then 
homogenized and crushed for a pot trial in the greenhouse 
experiment. Sub-samples were taken from the composites, air-dried 
and ground with mortar and  pestle  to  pass  through a 2 mm  sieve 

and subjected to physicochemical analyses and sorption study. For 
determinations of organic carbon (OC) and total nitrogen (TN), 
however, a 0.5 mm sieve was used. 

Soil particle size was done by using the modified sedimentation 
hydrometer procedure (Bouyoucos, 1951), bulk density (BD) was 
determined according to BSI,(1975) and soil water holding at filed 
capacity and permanent wilting point was determined according to 
the procedure outlined by Van Reeuwijk (1993). Soil pH and 
electrical   conductivity  (EC)  were  measured   in   the  supernatant  
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Figure 1. Map of the soils sampling area. 

 
 
 
suspension of a 1:2.5 soil:water mixture by using a pH meter and 
EC meter, respectively (Van Reeuwijk, 1993). Soil organic carbon 
was determined by using wet oxidation method of Walkley and 
Black (Walkley and Black, 1934), while total nitrogen was analyzed 
by wet-oxidation procedure of the Kjeldahal method (Bremner and 
Mulvaney, 1982). Available phosphorus was determined by Olsen 
method (Olsen and Sommer, 1982). Exchangeable basic cations 
and cation exchange capacity (CEC) of the soils were determined 
by leaching the soils with neutral 1M ammonium acetate (Van 
Reeuwijk, 1993). The exchangeable cations, calcium (Ca) and 
magnesium (Mg), in the leachate were determined by Atomic 
Absorption Spectrophotometer (AAS), whereas potassium (K) and 
sodium (Na) were determined by flame photometer. Sulfate was 
determined turbid-metrically using barium sulfate precipitation 
method (Motsara and Roy, 2008). Available micronutrients iron 
(Fe), manganese (Mn), zinc (Zn) and copper(Cu) contents of the 
soils were extracted by diethylenetriaminepentaacetic acid (DTPA) 
method (Lindsay and Norvell, 1978) and the contents of each in the 
extract were determined by atomic absorption spectrophotometer. 
The concentration of water-soluble boron was determined by hot 
water extraction (Watson, 2011). 
 
 
Preparation of sorption solutions  
 
The laboratory analysis result of the soil samples showed that total 
N, available P, S, and B are deficient in both soil types. In addition, 
K and Zn in Nitisols were below three times the critical levels of the 
respective  elements,  while  the  other  nutrients  were found  to  be 

sufficient for crop production. Based on the analysis result sorption 
solutions for phosphorus (P), sulfur (S), boron (B), potassium (K) 
and zinc (Zn) were prepared and the amount of a particular element 
necessary to bring the level to three times its critical level was 
determined from the sorption solution curves. A series of five 
sorption solutions were prepared in polyethylene bottles with a 
control in replications. The actual amounts were varying according 
to the concentration of a particular element in the soil (Table 1). 

Ten gram of soil sample along with 10 ml of sorption solution was 
added to each bottle, while 10 ml of distilled water was added for 
the control. Then, the bottles were gently shake to ensure complete 
mixing of the solution with the soil and allowed to air dry. The air 
dried samples were extracted and analyzed for the elements. A 
sorption curve was constructed for each element by plotting the 
amount of element extracted against the added amount. These 
sorption curves were used to determine the optimum amount of 
element to be added in the treatments of the greenhouse 
experiment except for N. N was added based on the 
recommendations given by Holeta Agricultural Research Center 
(150 DAP and 100 Urea per hectare for Nitisols and 150 DAP and 
200 Urea per hectare for Vertisols) (personal communication). The 
critical levels used for the nutrients were phosphorus, 12 mg; 
potassium, 121 mg; sulfur 10 mg, zinc, 0.5 mg and boron 0.5 mg 
per kg of soil (Havlin et al. 2010; Landon, 2014). 
 
 
Experimental design and treatments 
 
The treatments were determined by using soil analysis and sorption  
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Table 1. Concentration of nutrients in sorption solutions. 
 

Sorption solution  
Concentration (mgL

-1
) 

P K S Zn B 

Control 0 0 0 0 0 

1 20 25 10 1 0.25 

2 40 50 20 2 0.5 

3 80 100 30 4 1.0 

4 160 200 40 8 2.0 

5 320 400 50 16 4.0 

 
 
 

Table 2. Treatments and amount of elements added (mg kg-1 soil) to the two experimental soils. 
 

Nitisols Vertisols 

Opt. (N: 39.5, P: 114, K:29.3, S:36, B:2.4 and Zn:1.4) Opt. (N: 62.5, P: 110, S:44 and B: 2.8) 

Opt. – N Opt. – N 

Opt. – P Opt. – P 

Opt. – K Opt. – S 

Opt. – S Opt. – B 

Opt. – B Control 

Opt. – Zn  

Control  
 

Opt. = Optimum treatment, Opt. - = Optimum treatment without the indicated element, Control = without any element. 

 
 
 
results, except for N, for both soils. Three kilogram of the composite 
soil sample was placed on the plastic sheet and measured amounts 
of nutrients as per the treatments (Table 2) were applied and mixed 
thoroughly before filling the plastic pots (20 cm × 14.5 cm × 16 cm). 
Plastic pots filled with soils were watered to the field capacity three 
days before seed sowing. Wheat variety Digalu, obtained from 
Holeta Agricultural Research Center, and that is commonly used by 
the farmers in the study area, was used as a test crop. Six seeds of 
wheat were sown in each pot and thinned to four plants at two 
weeks after germination. The pots were kept in a greenhouse and 
watered using deionized water regularly to maintain moisture level 
at about field capacity. Under each pot, a saucer was placed to 
collect drainage losses of the nutrients. The treatments were 
arranged in a completely randomized design (CRD) with five 
replications. 
 
 
Plant data collection and sample analysis 
 
Plant data collection 
 
Eight weeks after germination, two replications were randomly 
selected and the plants in each pot were sampled for determination 
of nutrient contents in the shoot. Nutrient uptake by the shoot for 
each treatment was determined quantitatively by multiplying shoot 
dry weight of each treatment by the respective nutrient content of 
the shoot. At maturity growth parameters including plant height, 
spike length, spike number, total biomass and grain yield were 
measured from the remaining three replications. Plant height was 
measured from the ground level to the tip of the spike using a ruler. 
Spike length was measured from its base to the tip. Spike number 
was determined by counting the number of fertile spikes per plant 
using the four plant samples and  number  of  seeds per  spike  was 

counted. Total biomass yield was determined by weighing the total 
above ground plant biomass before threshing to separate the grain. 
Grain yield was measured by taking the weight of the grains 
threshed from each plant after adjusting the grain moisture content 
to 12.5%. Straw yield was calculated as the difference between the 
total above ground plant biomass and grain yield. Plant tissue 
samples (grain and straw) from each pot were put in envelopes and 
oven dried at 70°C to constant weight and finely ground using a 
stainless steel grinder to pass through 0.5 mm mesh sieve and 
analyzed for nutrient concentrations.  
 
 
Plant sample analysis 
 
Plant samples were analyzed following dry ashing method, whereby 
the plant material is calcinated in a muffle furnace, dissolved in 
nitric acid, and filtered for the determination of nutrient elements. 
The concentration of P in the filtrate was determined by 
spectrophotometer using the vanado-molybdate method, and K was 
determined by a flame photometer, whereas Ca, Mg, and 
micronutrients were determined by atomic absorption 
spectrophotometer (Wolf, 1982). B was measured colorimetrically 
using Azomethine-H (Sippola and Ervio, 1977). N in the plant 
material was analyzed by wet-oxidation of the modified Kjeldahl 
procedure (Nelson and Sommers, 1973). S was determined by di-
acid digestion method as described by Motsara and Roy (2008). 
 
 
Statistical analysis 
 
The data collected from greenhouse experiment and laboratory 
analysis were subjected to analysis of variance using SAS 
statistical  software  version  9.2  (SAS,   2008).   Duncan’s  multiple  
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Table 3. Physical characteristics of the surface soils of Wolmera district. 
 

Soil characteristics Nitisols Vertisols 

Sand (%) 18 16 

Silt (%) 28 26 

Clay (%) 54 58 

Textural Class Clay Clay 

Bulk density (g cm
-3

) 1.22 1.21 

Field Capacity (%) 28.16 39.69 

Permanent Wilting Point (%) 18.36 27.90 
 

 
 

Table 4. Chemical characteristics of the surface soils of Wolmera district. 
 

Soil characteristics Nitisols Vertisols 

pH in water (1:2.5) 5.6 6.1 

EC (1:2.5) (dsm
-1

) 0.080 0.094 

OC (%) 1.55 2.45 

TN (%) 0.19 0.24 

Av. P (mgkg
-1

 soil) 9.62 10.19 

Av. K (mgkg
-1

 soil) 343 438 

Av. S (mgkg
-1

 soil) 8.24 6.93 

Na (cmol(+)kg
-1

 soil) 0.07 0.23 

K (cmol(+)kg
-1

 soil) 0.92 1.13 

Ca (cmol(+)kg
-1

 soil) 7.48 21.93 

Mg (cmol(+)kg
-1

 soil) 2.50 5.93 

CEC (cmol(+)kg
-1

 soil) 34.62 53.57 

Base Saturation (%) 34.82 54.26 

Fe (mg kg
-1

 soil) 44.10 51.91 

Mn (mg kg
-1

 soil) 57.26 36.29 

Zn (mg kg
-1

 soil) 0.94 2.29 

Cu (mg kg
-1

 soil) 4.27 5.04 

B (mg kg
-1

 soil) 0.41 0.33 
 
 
 

range tests was used to separate significantly differing treatment 
means at P < 0.05.  
 
 

RESULTS AND DISCUSSION  
 

Selected physical and chemical properties of the 
experimental soils  
 

Soil physical properties  
 

The surface soils (0-20 cm depth) of the experimental 
sites were dominated by clay fraction, which is 54% for 
Nitisols and 58% for Vertisols (Table 3). The relatively 
high clay content observed in this study agrees with the 
findings of (Abebe et al., 2013; and Hillette et al., 2015), 
which showed high clay contents for Nitisols and 
Vertisols. The high clay content indicates better water 
and nutrient holding capacity of the soils. The bulk 
density of the two soils were very similar and within the 
optimum  range  for   mineral    soils   (1.21 - 1.22 g cm

-3
). 

According to the rate established by Handreck and Black 
(1984), the bulk density values of both soils do not restrict 
root penetration and are suitable for plant growth. The 
soil moisture contents at field capacity and permanent 
wilting point were 28.16 and 18.36% for Nitisols and 
39.69 and 27.90% for Vertisols, respectively. These 
moisture contents are considered suitable for plant 
growth and soil microbial activity. However, the soil 
moisture content of Nitisol was lower than that of Vertisol 
by 40.9% at field capacity and by 51.9% at wilting point. 
Thus, this requires further study to elucidate weather the 
wheat crop response could be similar with such moisture 
content differenec between the two soils.  
 
 
Soil chemical properties 
 
As per the ratings established by Tekalign (1991) for 
Ethiopian soils, the soil pH is moderately acidic for 
Nitisols and slightly acidic for Vertisols (Table 4), which is  
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Figure 2. Phosphorus and Sulfur sorpotin characteristics of Nitisols and Vertisols. 

 
 
 
favorable for most crops. The electrical conductivity of 
both study soils were low (Table 4), indicating that these 
soils contain low levels of soluble salts and thus, the 
problem of salinity is not expected. The organic carbon 
and total N contents of both soils (Table 4) could be 
grouped under moderate range, based on the ratings of 
soil test values established by Tekalign (1991). However, 
the total organic carbon and total N contents of Vertisols 
were higher than that of Nitisols by 58.1 and 26.3%, 
respectively. Available P was low for both soils (<12 mg 
kg

−1
) according to the rating of Havlin et al. (2010), while 

low for Nitisols and medium for Vertisols according to  
Cottenie (1980), who classified <10 mg kg

−1
 of soil 

available P as low and between 10 and 17 mg kg
−1

 of soil 
as medium. The present results are in agreement with 
the findings of Getachew et al. (2015) and Hillette et al.  
(2015). Available S contents for both soil types were 
found to be low according to Havlin et al. (2010) but in 
medium range according to Horneck et al. (2011). The 
results are in agreement with the findings of Assefa et al. 
(2015a) who reported S deficiency in central highlands of 
Ethiopia.  

The exchangeable Ca followed by Mg was the 
dominant cations in both soil types. Relatively higher 
values of exchangeable Ca and Mg were recorded for 
Vertisols as compared to Nitisols (Table 4). Similarly, 
higher value (27.7%) of exchangeable K was recorded for 
Vertisols as compared to Nitisols. The concentrations of 
basic cations (Ca, Mg and K) in the two soil types were in 
adequate ranges for crop production and responses of 
crops to applications of fertilizers containing these 
elements may not be expected, except for K in Nitisols 
(Landon, 2014). According to the rating of Landon (2014), 
cation exchange capacities (CEC) of the studied soils 
were high for Nitisols and very high for Vertisols. The 
very high value of CEC in Vertisols is mainly due  to  both 

high clay and organic matter content of the soil. The 
status of micronutrients was found to be sufficient in both 
soil types, except boron in both soil types and zinc in 
Nitisols (Table 4). 
 
 
Soprtion characteristics of Nitisols and Vertisols 
 
The results showed that both Nitisols and Vertisols have 
a relatively strong sorption capacity for P, S and B, while 
Nitisols also had a strong capacity for retention of Zn  
(Figures 2, 3, 4).  Retention of K was relatively low when 
compared to the other plant nutrients tested in Nitisols. 
Considering the laboratory analyses and sorption studies 
P, S, B and Zn had high potential to limit yield, while 
there is also a probability for K to limit yield in Nitisols. 

The soluble P added to the soils was strongly fixed by 
both soil types although the fixation is relatively greater in 
Vertisols as compared to Nitisols. The high clay content 
of the soils in this study could increase P fixation due to 
its high surface area. Havlin et al. (1999) reported that P 
fixation tends to be more pronounced and ease of P 
release tends to be lowest in soils with higher clay 
content. At low initial P addition, P retention was 
maximum, while at high P addition, P retention was 
minimum. As increment of P addition increased, P 
retention decreased. It can be concluded that soil P 
saturation can decrease adsorption, that is when the soil 
is saturated with P, rate of adsorption decreased. This 
reduction in percent of P adsorption could be due to 
increasing concentration of applied P causing excess P 
on soil adsorption sites. This results in P release into 
solution. Sulfur was also fixed by both soil types. 
However the fixation was relatively lower as compared to 
P fixation. The sorption might be due to low soil pH, S 
adsorbed  in   oxides   and  hydroxides  of  iron  and  clay  
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Figure 3. Boron sorption characteristics of Nitisols and Vertisols. 

 
 
 

 
 

Figure 4. Potassium and Zinc sorption characteristics of Nitisols and Vertisols. 

 
 
 
minerals. Similar to phosphate, sulphate is adsorbed to 
clay minerals and sesquioxides, thus presence of H2PO4

-
 

may affect SO4
2-

 adsorption, because the binding 
strength for sulphate is not as strong as that for 
phosphate. The relative strength of anion retention by soil 
colloids varies in order: phosphate > sulphate > nitrates = 
chlorides (Blair, 1988).  

Although the sorption results indicated that boron was 
highly fixed by the two soils, the fixation is greater in 
Vertisols (Figure 3). This could be due to relatively high 
pH in Vertisols than Nitisols and the types of clay mineral, 
which might have been dominated by kaolinite. According 
to Havlin et al. (1999), increasing pH, clay content, 
organic matter and presence of Al compounds favor 
H4BO4

-
 adsorption, and B-adsorption capacity generally 

follows the order mica> montmorillonite > kaolinite. 
The results of K sorption indicated that this nutrient was 

also fixed by the soil in small amount. This may be due to 

presence of kaolinite clay mineral in the soil. According to 
Havlin et al. (2010), K fixation represents the re-
entrapment of K

+
 between the layers of the 2:1 clays, 

predominantly hydrous mica, but 1:1 minerals such as 
kaolinite do not fix K. The sorption results indicated that 
Zn was also highly fixed by Nitisols. This could be due to 
relatively low pH values and high clay minerals in this 
soil. 
 
 
Effects of nutrient omissions on shoot dry weight  
 
Comparison of the mean values of shoot dry weight 
showed that the lowest values were obtained from the 
control, followed by Opt.-N and Opt.-P in both Nitisols 
and Vertisols (Tables 5 and 6). In Nitisols shoot dry 
weight was reduced by 93, 70, and 50%, for the control 
and  treatments  with  omission of N (Opt.-N) and P (Opt.- 
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Table 5. Shoot dry weight, nutrients concentration and uptake in the shoot as influenced by treatments in Nitisols. 
 

Treatment 
 (g plant

-1
) 

Shoot nutrient concentration Shoot nutrient uptake 

(%) (mg kg
-1

) (mg plant
-1

) 

SDW N P K S Zn B N K P S Zn B 

Opt. 2.49
a
 1.70

c
 0.15

e
 2.51

b
 0.53

a
 29.80

bc
 69.51

d
 42.26

a
 3.71

ab
 62.17

a
 13.11

a
 0.074

a
 0.173

b
 

Opt. -N 0.74
e
 1.17

d
 0.23

a
 1.70

f
 0.43

c
 21.57

e
 107.61

ab
 8.56

b
 1.68

c
 12.43

d
 3.13

e
 0.016

d
 0.079

de
 

Opt. -P 1.25
d
 2.91

a
 0.19

bc
 3.00

a
 0.51

ab
 45.94

a
 91.92

c
 35.86

a
 2.36

c
 37.22

c
 6.24

d
 0.057

bc
 0.114

cd
 

Opt. -K 2.00
bc

 1.82
c
 0.18

d
 2.16

d
 0.47

bc
 30.63

b
 98.65

bc
 36.25

a
 3.52

b
 42.91

bc
 9.37

c
 0.061

abc
 0.197

b
 

Opt. -S 2.40
a
 1.89

bc
 0.19

bc
 2.09

e
 0.46

c
 27.34

d
 114.34

a
 45.63

a
 4.49

a
 50.01

b
 10.88

b
 0.066

ab
 0.275

a
 

Opt. -B 1.63
cd

 2.25
b
 0.20

b
 2.44

c
 0.45

c
 29.01

c
 31.40

e
 36.38

a
 3.28

b
 39.51

c
 7.31

d
 0.048

c
 0.051

e
 

Opt. –Zn 2.12
ab

 1.95
bc

 0.19
cd

 2.12
de

 0.45
c
 28.99

c
 60.54

d
 41.22

a
 3.91

ab
 44.75

bc
 9.52

c
 0.062

abc
 0.128

c
 

Control 0.17
f
 1.31

d
 0.09

f
 0.76

g
 0.32

d
 13.05

f
 15.71

f
 2.20

b
 0.14

d
 1.27

e
 0.54

f
 0.002

d
 0.003

f
 

LSD (0.05) 0.383 0.354 0.012 0.053 0.041 1.30 9.32 11.06 0.77 9.69 1.31 0.152 0.409 

CV (%) 10.41 8.19 2.86 1.11 3.92 2.00 5.48 15.45 11.6 11.58 7.57 13.71 13.91 
 

Opt. = Optimum treatment, Opt.- = Optimum treatment without the indicated element, Control = without any element, SDW = Shoot dry weight, `LSD = List significant difference,     CV (%) = 
Coefficient of variation. Means followed by the same letter(s) within a column are not significantly different at P <0.05. 

 
 
 

Table 6. Shoot dry weight, nutrients concentration and uptake in the shoot as influenced by treatments in Vertisols. 
 

Treatment 
(g plant

-1
) 

Shoot nutrient concentration Shoot nutrient uptake 

(%) (mg kg
-1

) (mg plant
-1

) 

SDW N P K S Zn B N P K S Zn B 

Opt. 3.14
a
 1.61

a
 0.17

cd
 1.91

c
 0.55

a
 14.70

e
 76.23

b
 50.44

a
 5.16

a
 59.87

a
 17.05

a
 0.046

b
 0.239

a
 

Opt. –N 0.70
c
 1.58

a
 0.27

a
 1.63

d
 0.40

b
 16.10

d
 82.95

ab
 10.96

c
 1.83

d
 11.35

c
 2.82

d
 0.011

d
 0.058

d
 

Opt. –P 1.83
b
 1.73

a
 0.16

d
 2.28

a
 0.29

c
 27.91

b
 87.44

a
 31.53

b
 2.88

c
 41.43

b
 5.26

c
 0.051

b
 0.160

c
 

Opt. –S 2.01
b
 1.78

a
 0.22

b
 2.32

a
 0.31

c
 16.61

d
 73.99

b
 35.51

b
 4.30

b
 46.30

b
 6.24

c
 0.034

c
 0.149

c
 

Opt. –B 3.10
a
 1.62

a
 0.18

c
 1.98

b
 0.39

b
 22.48

c
 65.02

c
 49.83

a
 5.54

a
 61.23

a
 11.90

b
 0.070

a
 0.202

b
 

Control 0.46
c
 1.19

b
 0.23

b
 1.37

e
 0.24

d
 39.21

a
 58.30

c
 5.42

d
 1.03

d
 6.20

c
 1.07

e
 0.018

d
 0.027

d
 

LSD (0.05) 0.347 0.287 0.017 0.07 0.054 1.40 8.96 4.97 0.82 6.71 1.12 0.009 0.036 

CV (%) 7.58 7.41 3.54 1.49 6.15 2.50 4.95 6.63 9.71 7.27 6.2 9.14 10.58 
 

Opt. = Optimum treatment, Opt. - = Optimum treatment without the indicated element, Control = without any element, SDW= Shoot dry weight, LSD = List significant difference, CV (%) = Coefficient of 
variation.  Means followed by the same letter(s) within a column are not significantly different at P < 0.05. 

 
 
 

P), respectively, whereas the corresponding 
reductions were 85, 78  and  42%, respectively, in 

Vertisols, as compared to the optimum treatment. 
This indicates that N and P in both soil types were 

the most limiting nutrients to support good wheat 
growth,  perhaps  due  to  inherent  poor  N  and P 
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status of the experimental soils. Hence, external supply 
of these nutrients is required to enhance wheat growth 
and development. These results are in line with Hillette et 
al. (2015) who reported deficiency of  N and P  nutrients 
for wheat on Vertisols of central Ethiopia, and P 
deficiency on Nitisols of central Ethiopian highlands 
(Getachew et al., 2015). In addition, omission of B, K and 
Zn resulted in 35, 20 and 15% shoot yield reduction of 
wheat, respectively in Nitisols. On the other hand, S 
showed 36% yield reduction in Vertisols, indicating that 
S, K, Zn and B are also limiting nutrients to support good 
wheat growth in the soils and the need for external supply 
of these nutrients (Tables 5 and 6). These responses to 
the nutrients are in line with the soil analysis results 
(Table 4). 
 
 
Effects of nutrient omissions on nutrient 
concentrations and uptakes  
 
Nitrogen omission showed a significant (P<0.05) effect on 
nutrient concentrations in shoots and uptake of the 
nutrients by wheat in Nitisols (Table 5), while it only 
showed a significant effect on shoot nutrient uptakes in 
Vertisols (Table 6). The N contents varied from 1.17 to 
2.91% for Nitisols and from 1.19 to 1.78% for Vertisols 
(Tables 5and 6), which were below the critical value of 
3.6% for wheat (Engel and Zubriski, 1982). Thus, the low 
concentrations of N in the wheat tissue could be due to 
inadequate rate of N used in the present pot experiments 
and low soil total nitrogen content. The other most 
probable explanation is that the critical values of the 
nutrient in the plant could be soil and crop variety 
specific. Perhaps, growing conditions may also influence 
the growth performance and nutrient uptake of crops. 

Although the N concentrations in all treatments for both 
soils were generally below the critical range, the values of 
N concentration and uptake in plant material of N-omitted 
treatments were even very low as compared to the other 
treatments, except the control. This signifies that N was 
one of the limiting nutrients in these soils. 

Nitrogen concentrations in P-omitted pots were very 
high for both Nitisols (2.91%) (Tables 5) and Vertisols 
(1.73%) (Table 6). These high concentrations of N in the 
P-omitted pots might have resulted from the dry matter 
reduction that occurs when plants are under nutritional 
stress. But the N uptake in P-omitted treatments was 
relatively low, since the dry matter yield in these 
treatments were also very low. Differences in nutrient 
uptakes in both soil types were better explained by 
differences in dry matter production rather than by 
nutrient concentration in the shoot. 

Phosphorus omission showed highly significant (P < 
0.05) differences in shoot nutrient concentrations and 
uptakes of nutrients by wheat in both Nitisols and 
Vertisols (Tables 5 and 6). Phosphorus concentration in 
the plant ranged from  0.09  to  0.23%  and  from  0.16  to  

 
 
 
 
0.27% for Nitisols and Vertisols, respectively. According 
to Plank and Donohue (2000) these values are below the 
critical range, but were close to the lower limit of 
sufficiency range. According to the authors’ ratings, the 
sufficiency range for P in wheat is between 0.2 and 0.5%. 
These low concentrations of P may be due to a dilution 
effect by high biomass production, particularly when at 
optimum N supply, low soil available P content and high 
P fixation. The phosphorus concentrations in N-omitted 
treatments were high (0.23%) for Nitisols (Table 5) and 
(0.27%) for Vertisols (Table 6). This high concentration of 
P in the N-omitted treatments might have resulted from 
the combined effects of element accumulation and dry 
matter reduction that occurred when plants are under 
nutritional stress.  The P uptake in N-omitted treatments 
was very low, since nitrogen deficiency causes a marked 
reduction in uptake of P (Mengel and Kirby 2001). 
Additinally, the low P uptake is also due to low biomass 
production. 

Potassium concentration and uptake in wheat shoot 
showed significant difference (P < 0.05) among 
treatments for both soils (Tables 5 and 6). The 
concentration of potassium in the plants ranged from 0.76 
to 3.00% for Nitisols and from 1.37 to 2.32 % for 
Vertisols. The concentrations of potassium were above 
the critical range for both soils, except for the controls. 
According to Jones et al. (1991) the critical range of K in 
plant material of wheat is 1.5 to 3.0%. The low 
concentration of K in the controls may be due to 
inadequate soil available K. The uptake of K in N-omitted 
treatments was very low for both soils. This low uptake 
may be due to nitrogen deficiency, which causes a great 
reduction in uptake of K (Mengel and Kirby, 2001). Sulfur 
concentration and uptake in wheat plants showed 
significant differences (P < 0.05) among the treatments in 
both soil types (Tables 5 and 6). The concentrations of 
sulfur in the plant material range from 0.32 to 0.53 % for 
Nitisols and from 0.24 to 0.55 % for Vertisols. According 
to Jones et al. (1991) this is within the critical range. Low 
uptake of S in the control, N-omitted and P-omitted 
treatments may be due to low concentration of N and P, 
because N, P and S are component of protein molecule 
and omission of these nutrients reduce the uptake of S. 

Zinc concentration and uptake in wheat plants were 
significantly (P < 0.05) different among the treatments in 
both soil type. Zinc concentration in wheat plants ranged 
from 13.05 to 45.94 mg kg

-1
 for Nitisols, which is below 

the critical for the control and within the critical range for 
other treatments. According to Plank and Donohue 
(2000), the critical range of Zn in plant material of wheat 
is 18 to 70 mg kg

-1
. Low uptake of Zn in control and N-

omitted treatments may be due to low concentration of Zn 
in control and N in both treatments. According to Mengel 
and Kirby (2001), nitrogen deficiency causes a marked 
reduction in uptake of Zn. The result is also in agreement 
with the low Zn and N content of the initial soil (Table 4). 

Boron  concentration  and  uptake  in  the   plants  were  
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Table 7. Treatment effects on Yield and Yield components of Wheat in Nitisols. 
 

Treatment PH (cm) SL (cm) NSPS SY (g pot
-1

) GY (g pot
-1

) BY(g pot
-1

) HI 

Optimum 88.5
a
 8.5

a
 35.7

a
 6.8

ab
 6.4

a
 13.1

a
 48.5

a
 

Opt. -N 66.2
d
 5.6

c
 23.2

c
 2.3

d
 2.2

c
 4.4

c
 49.0

a
 

Opt. -P 79.3
bc

 7.8
b
 28.6

b
 5.5

c
 4.9

b
 10.4

b
 47.4

a
 

Opt. -K 72.9
cd

 7.6
b
 30.4

b
 6.8

ab
 5.8

a
 12.5

a
 45.9

a
 

Opt. -S 82.6
ab

 7.4
b
 31.6a

b
 6.5

b
 6.1

a
 12.7

a
 48.1

a
 

Opt. -B 80.8
b
 7.8

b
 32.2

ab
 6.7

ab
 6.2

a
 12.8

a
 48.0

a
 

Opt. -Zn 90.0
a
 7.7

b
 29.3

b
 7.3

a
 6.1

a
 13.4

a
 45.6

a
 

Control 49.4
e
 5.4

c
 18.5

c
 1.7

d
 1.6

c
 3.3

d
 49.5

a
 

LSD (0.05) 7.4 0.4 4.7 0.7 0.6 0.8 3.7 

CV (%) 4.2 2.3 7.0 5.3 5.2 3.5 3.4 
 

Opt. = Optimum treatment, Opt. - = Optimum treatment without the indicated element, Control= without any element, LSD= List significant 
difference, CV (%) = Coefficient of variation, PH= plant height (cm), SL= spike length (cm), NSPS= number of seeds per spike, SY= straw yield (g 
pot

-1
), GY= grain yield (g pot

-1
), BY= total biomass yield (g pot

-1
) and HI= harvest index. Means followed by the same letter(s) within a column are 

not significantly different at P < 0.05. 

 
 
 

Table 8. Treatment effects on Yield and Yield components of Wheat in Vertisols. 
 

Treatment  PH (cm) SL (cm) NSPS SY (g pot
-1

) GY (g pot
-1

) BY(g pot
-1

) HI 

Optimum 81.0
a
 8.0

a
 38.1

a
 10.2

a
 8.5

a
 18.7

a
 45.4

bc
 

Opt. -N 62.4
c
 5.5

b
 23.2

c
 2.8

d
 2.6

d
 5.4

d
 48.3

a
 

Opt. -P 81.8
a
 7.5

a
 30.2

b
 7.4

c
 6.6

c
 14.1

c
 47.4

ab
 

Opt. -S 74.5
ab

 7.8
a
 33.5

ab
 8.5

b
 7.3

b
 15.8

b
 46.5

abc
 

Opt. –B 81.8
a
 8.0

a
 31.7

b
 9.0

b
 7.2

b
 16.2

b
 44.7

c
 

Control 70.4
b
 5.2

b
 22.8

c
 3.2

d
 2.7

d
 5.8

d
 45.7

bc
 

LSD (0.05) 7.3 0.6 5.0 0.7 0.3 0.8 2.4 

CV (%) 4.0 3.5 6.8 4.1 2.3 2.5 2.1 
 

Opt. = Optimum treatment, Opt. - = Optimum treatment without the indicated element, Control= without any element, LSD= List significant 
difference, CV (%) = Coefficient of variation, PH= plant height (cm), SL= spike length (cm), NSPS= number of seeds per spike, SY= straw yield (g 
pot

-1
), GY= grain yield (g pot

-1
), BY= total biomass yield (g pot

-1
) and HI = harvest index. Means followed by the same letter(s) within a column are 

not significantly different at P< 0.05. 

 
 
 
significantly (P < 0.05) affected by treatments in both 
soils (Tables 5 and 6). Boron concentration in plants 
ranged from 15.71 to 114.34 mg kg

-1 
and from 58.30 to 

87.44 mg kg
-1

 for Nitisols and Vertisols, respectively, 
which were within and above the critical range.  
 
 
Effects of omissions of nutrients on plant height, 
spike length and number of seeds per spike 
 
Analysis of variance revealed that plant height, spike 
length and number of seed per spike   were significantly 
(P < 0.05) affected by omission of nutrients (Table 7). 
The higher values were measured for optimum and Zn-
omitted treatments for Nitisols and for optimum, P-
omitted and B-omitted treatments for Vertisols. As 
expected, the lowest plant heights were recorded for the 
controls and N-omitted treatments for both soils, 
indicating  that  vegetative  growth  is  highly  affected  by 

omission of N. This might be attributed to the role and 
presence of N in many essential compounds. The most 
important function of N in wheat is promotion of rapid 
growth through increases in height, tiller number, size of 
leaves and length of roots (Chatterjee and Maiti, 1985). 
The highest spike length and number of seeds per spike 
were obtained from optimum treatments, whereas the 
least values were recorded for the controls and N-omitted 
treatments in both soils. The spike length for the P, S and 
B omission treatments were not significantly different 
from the optimum treatment in Vertisols (Table 8). 
 
 
Effects of omissions of nutrients on straw and grain 
yields  
 
The results showed that omission of some nutrients 
significantly (P <0.05) influenced straw yield (SY), grain 
yield (GY)  and total biomass yields (BY) of wheat in both  
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Nitisols and Vertisols (Tables 7 and 8). The highest grain 
and total biomass yields were recorded for the optimum 
nutrients application in both soils, although the values 
were statistically at par with those obtained from K, S, B 
and Zn-omitted treatments for Nitisols. On contrary, the 
highest straw yield (7.3 g pot

-1
) was recorded for Zn-

omitted treatment for Nitisols. For Vertisols, the highest 
straw yield (10.2 g pot

-1
) was obtained from the optimum 

treatment, whereas the lowest values were recorded for 
the control and N-omitted treatments in both soils. 

The total biomass yield results in Nitisols showed N 
and P to be the main yield limiting nutrients (Table 7). 
Omission of these nutrients reduced total biomass yield 
by 66.4 and 20.6%, respectively, as compared to the 
optimum treatment. Omission of N, P, S, and B from the 
Vertisols markedly reduced the total biomass yield (Table 
8). The yield reductions due to omission of these 
nutrients were 71.1, 24.6, 15.5 and 13.4%, respectively, 
as compared to the optimum treatment indicating that 
nutrients, such as N and P in Nitisols and N, P, S and B 
in Vertisols were limiting to support good crop growth. 
These findings are in line with the soil analysis results 
(Table 4). 

The highest grain yields were recorded for the optimum 
treatments, while the lowest grain yields were obtained 
from the controls and N-omitted treatments in both soils 
(Table 7 and 8). Grain yield increased by 75 and 68.2% 
due to optimum treatments over the controls in Nitisols 
and Vertisols, respectively. The grain yield reduction due 
to omission of N, P, S, and B were 65.6, 23.4, 4.7, and 
3.1%, respectively, for Nitisols and 69.4, 22.4, 14.1 and 
15.3%, respectively, for Vertisols. The results are in line 
with the findings of Assefa et al. (2015a), who reported 
that wheat responded well to applied N, S and P 
fertilizers in central highlands of Ethiopia. Eyasu (2013) 
also found strong wheat grain yield response to nitrogen, 
phosphorus and potassium (NPK) fertilizers under field 
condition on Rhodic Nitisols in south western Ethiopia. 
Similar study also showed nitrogen and phosphorus 
fertilizers significantly increased grain yield, biomass 
yield, seeds per spike, effective tiller number and plant 
height of bread wheat in southern Tigray (Assefa et al., 
2015b). Likewise, it was observed that grain yields of 
different genotypes of wheat significantly increased by 
application of boron as compared to the control (Soylu et 
al., 2004; Jana et al., 2005). 
 
 
Conclusion 
 
The surface soils of both Nitisols and Vertisols were 
dominated by clay fraction and the pH was in favorable 
range for most crops in both soils. The nutrient elements 
P, K, S, B and Zn in Nitisols and P, S and B in Vertisols 
were below three times the critical levels of the elements. 
Total biomass yield in Nitisols showed N and P to be the 
main yield limiting nutrients. Omission of these nutrients  

 
 
 
 
reduced total biomass yield by 66.4 and 20.6%, 
respectively, as compared to the optimum treatment in 
Nitisols. Omission of N, P, S, and B markedly reduced 
the total biomass yield in Vertisols. The yield reductions 
due to omission of these nutrients were 71.1, 24.6, 15.5 
and 13.4%, respectively as compared to the optimum 
treatment. Thus, omission of nutrients, such as N and P 
in Nitisols and N, P, S and B in Vertisols, was limiting 
crop growth. Grain yield increased by 75 and 68.2% due 
to optimum treatment over the controls in Nitisols and 
Vertisols, respectively. The reduction in grain yield due to 
omission of N, P, S, and B was 65.6, 23.4, 4.7 and 3.1% 
for Nitisols and 69.4, 22.4, 14.1 and 15.3% for Vertisols, 
respectively. Omission of K and Zn in Nitisols also 
causes up to 9.4% and 4.7% grain yield reduction, 
respectively. This indicates that order of requirement for 
Nitisols were N > P > K > S=Zn≈ B, whereas N > P > B ≈ 
S for Vertisols.  
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Maize (Zea mays L.) is one of the cereals that provide calorie requirements in the majority of Ethiopians 
diet. The national average maize yield in Ethiopia is low and thus knowledge of combining ability and 
heterosis is a prerequisite to develop high yielding maize varieties. The objective of the present study is 
to estimate combining abilities of double haploid (DH) maize inbred lines for grain yield and related 
agronomic traits, and to identify crosses with higher standard heterosis. A total of 36 diallel crosses 
generated by crossing nine maize DH lines using half diallel mating scheme and four standard checks 
were studied for different desirable agronomic traits during 2017 cropping season at Ambo and 
Kulumsa Agricultural Research Centers. The genotypes were evaluated in alpha lattice design 
replicated twice in both locations. Analyses of variances showed significant mean squares due to 
crosses for most traits studied. The highest grain yields were obtained from crosses L1 x L3, L3 x L8, 
L4 x L8 and L8 x L9. GCA mean squares were significant for all studied traits, while SCA mean squares 
were significant only for grain yield, days to anthesis, ear per plant and ear diameter. Relatively larger 
GCA over SCA variances were observed in the current study for most studied traits revealing the 
predominance of additive gene action in controlling these traits. Of the DH inbred lines, L3 and L8 were 
the best general combiners for grain yield, and hence are promising parents for hybrid development. 
Inbred lines  L2, L4, L6, L7 and L8 were good combiners for earliness whereas, L1, L2 and L6 showed 
negative and significant GCA effects for plant and ear height. In this study, none of the crosses showed 
positive and significant standard heterosis for grain yield. 
 
Key words: Combining ability, general combining ability, highland maize, standard heterosis, specific 
combining ability. 

 
INTRODUCTION 
 
Currently, maize is one of the most important field crops 
to   fulfill   food   security   in  Ethiopia.  It  contributes  the 

greatest share of production and consumption along with 
other major cereal crops, such as tef, wheat and sorghum 
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Table 1. Description of testing sites. 
 

Research center Altitude (masl) RF (mm) 
Temp (°C) 

Latitude Longitude Soil type 
Min Max 

Ambo 2225 1050 10.4 26.3 8°57’N 38°7’E Black vertisol  

Kulumsa 2180 830 10 23.2 8°5'N 39°10'E Luvisol/eutric nitosols  

 
 
 
(CSA, 2017). It has a significant importance in the diets of 
rural Ethiopia and has gradually penetrated into urban 
centers. This is particularly evidenced by green maize 
cobs being sold at road sides throughout the country as a 
hunger-breaking food available during the months of May 
to August annually (Twumasi et al., 2012).  

The high altitude sub-humid areas including the 
highland transition and true highland of Ethiopia is next to 
mid-altitude in maize  production. It is estimated that the 
highland sub-humid agro-ecology covers 20% of the land 
devoted annually to maize cultivation and 30% of small-
scale farmers in the area depend on maize production for 
their livelihood (Twumasi et al., 2001). In this agro-
ecology, maize production is characterized by low yields 
owing to unimproved varieties coupled with biotic 
constraints such as turcicum leaf blight, common leaf 
rust, stalk lodging, stalk borers, and storage pests and 
abiotic stresses such as frost, hailstorm and low soil 
fertility (Twumasi et al., 2001). Because of these 
constraints, the highland areas have been facing great 
challenges in maize production which occasionally lead 
to food insecurity, malnutrition, reduced income and 
widespread poverty (Demissew et al., 2014). Therefore, it 
remains important to develop high yielding, nutritionally 
enhanced and stress tolerant maize varieties which fit the 
diverse highland agro-ecology of the country. 

Combining ability studies are of primary importance in 
maize hybrid development since it provides information 
for the selection of parents, identification of promising 
hybrids and on the nature and magnitude of gene 
actions. On the other hand, heterosis occurs when two 
inbred lines of out bred species are crossed, as much as 
when crosses are made between pure lines. It is 
practically exploited to develop hybrid varieties (George, 
2007). 

Several studies on combining ability and heterosis of 
maize inbred lines for grain yield and yield related traits 
were conducted for different sets of locally 
developed/introduced inbred lines in Ethiopia (Hadji, 
2004; Dagne et al., 2010; Demissew et al., 2011; Yoseph 
et al., 2011; Shushay et al., 2013; Umar et al., 2014; 
Girma et al., 2015; Beyene, 2016; Tolera et al., 2017; 
Dufera et al., 2018). However, it is always mandatory for 
any breeding program to generate such information for 
any new batch of inbred lines generated locally or 
received outside of the program. Currently, at Ambo 
highland maize research program there are a number of 
new batches of inbred lines  generated  through  different 

methods of inbred line development. Little or no 
information is available on the particular sets of new 
inbred lines used for this study regarding the combing 
ability effects of the parental lines to be used for future 
hybrid development. 

The focus of the current study was, therefore to 
generate information on nine elite maize inbred lines 
crossed using half diallel mating scheme following 
Griffing (1956) with the objectives  of identifying best 
inbred lines having good general and specific combining 
ability effects, and determine the magnitude of standard 
heterosis for yield and yield related traits for further 
breeding and/or cultivar development.  
 
 

MATERIALS AND METHODS 
 
Descriptions of experimental sites 
 
The experimental sites used for this experiment were two 
representative sites of highland sub-humid agro-ecology in Ethiopia, 
viz., Ambo Agricultural Research Centre (AARC) and Kulumsa 
Agricultural Research Centers (KARC) (Table 1).  
 
 
Experimental materials  
 
Nine inbred lines obtained from Ambo highland maize breeding 
program were crossed using diallel mating design during the main 
cropping season of 2016 and thirty-six single cross hybrids were 
generated. The list of inbred lines and their origin is presented in 
Table 2. The DH lines used in the crosses were originally obtained 
from CIMMYT-Zimbabwe and were locally selected based on 
previous field performances in test-cross evaluations for adaptation, 
disease reaction and general combining ability by the highland 
maize breeding program at AARC. The thirty-six F1 crosses 
together with four commercial hybrid checks: Arganne, Kolba, Jibat 
and Wenchi were used in the hybrid trial evaluations in 2017.  

 
 
Experimental design trial management and data collection 
 
The 36 F1 crosses plus the four hybrid commercial checks adapted 
to the highland agro-ecology of Ethiopia were planted using alpha 
lattice design (Patterson and Williams, 1976) with two replications 
each of which have eight blocks with five entries in each of the 
blocks. Design and randomization of the trials were generated 
using CIMMYT’s Field book software (Bindiganavile et al., 2007). 

The trials were hand planted with two seeds per hill, which later 
thinned to one plant per hill at the 2-4 leaf stage to get a total plant 
population of 53,333 per hectare. Reliable moisture level of the soil 
was assured before planting so as to insure good germination and 
seedling development. Pre-emergence herbicide, Premagram 
Gold660   at  the  rate  of  5  lt ha-1,  was  applied   three  days  after  
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Table 2. The list of inbred lines used to make the diallel crosses for the study. 

 

Entry Pedigree Seed Source 

1 (INTA-F2-192-2-1-1-1-B*9/CML505-B)DH-3060-B-B-#  AHMBP*  

2 (LPSC7-C7-F64-2-6-2-1-B/CML488)DH-3033-B-B-# AHMBP* 

3 (CML444/CML539)DH-3091-B-B-# AHMBP* 

4 (CML144/CML159)DH-3049-B-B-# AHMBP* 

5 ([LZ956441/LZ966205]-B-3-4-4-B-5-B*7-B/DTPWC9-F109-2-6-1-1-B)DH-3001-B-B-# AHMBP* 

6 (CML545/CML505)DH-10-B-# AHMBP* 

7 (CML545/CML505)DH-44-B-# AHMBP* 

8 
([CML312/[TUXPSEQ]C1F2/P49-SR]F2-45-3-2-1-BB//INTA-F2-192-2-1-1-1-B*4]-1-5-1-2-1-
B*6/CML505)DH-11-B-# 

AHMBP* 

9 (CML312/CML442)DH-3002-B-B-# AHMBP* 
 

*AHMBP = Ambo Highland Maize Breeding Program. 

 
 
 
planting of the seeds to control weeds followed by hand weeding at 
a later stage of crop emergence. Each entry  was placed in a one-
row plot of 5.25 m long and 0.75 m x 0.25 m apart between and 
within rows spacing, respectively. The recommended rate of 
inorganic fertilizers, that is, 150 and 200 kg ha-1 of DAP and urea, 
respectively, were used. Urea was applied in two splits, viz., half of 
it was applied when plants had six to eight leaves, and the 
remaining half was applied at flag leaf emergence before flowering 
at both sites. Other standard cultural and agronomic practices were 
followed in trial management as per recommendations for the 
areas. 

The procedure of data collection followed CIMMYT’s manual for 
managing trials and reporting data (CIMMYT, 1985). Data on grain 
yield and other important agronomic traits were collected on a plot 
and sampled plants base. Data collected on a plot basis include: 
days to 50% anthesis (DA), days to 50% silking (DS), anthesis-
silking interval (ASI), grain yield (GY) (t -ha-1), thousand kernel 
weight (TKW) (g). Data collected on plant base include: ear height 
(EH) (cm), plant height (PH) (cm), ear length (EL) (cm), ear 
diameter (ED) (cm), number of ears per plant (EPP), number of 
rows per ear (RPE), number of kernels per row (KPR).    
 
 
Statistical analyses 
 
Before data analyses, anthesis-silking interval (ASI) was normalized 

using ln  as suggested by Bolanos and Edmeades 

(1996). Analysis of variance (ANOVA) per individual and across 
locations was carried out using PROC MIXED method = type3 
procedure in SAS (2003) by considering genotypes as fixed effects 
and replications and blocks within replications as random effects for 
individual site analyses. In the combined analyses, environments, 
replications within environments and blocks within replications and 
environments were considered as random while genotypes 
remained as fixed effects following same procedure of Moore and 
Dixon (2015). Combined analyses were performed for traits that 
showed significant genotypic differences  in the individual location 
analyses, and after testing homogeneity of error variance using 
Bartlett’s test (Gomez and Gomez, 1984). In the combined 
analyses, entry  and location main effects were tested using entry x 
location interaction mean squares as error term, while entry x 
location interaction mean squares were tested against pooled error. 
 
 

Combining ability analyses 
 

Combining  ability   analyses   were   done   for   traits  that  showed 

significant differences among genotypes and thus Griffing’s Method 
IV (crosses only) and Model I (fixed) of diallel analyses (Griffing, 
1956) was used to estimate combining ability effects and 
associated standard errors using a modification of the DIALLEL-
SAS program (Zhang et al., 2005). The significance of GCA and 
SCA effects were tested against the respective standard errors of 
GCA and SCA effects, respectively, using t-test (Griffing, 1956; 
Singh and Chaudhary, 1985). In the across locations  combining 
ability analyses, the significance of GCA and SCA mean squares 
were tested using the corresponding interactions with location as 
error term. The mean squares attributable to all the interactions with 
locations were tested against pooled error. 

The  linear mathematical model developed by Griffing (1956) for 
an observation made on the genotype for Method IV and model I 
was used as follows: 
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Where, Xij = the value of a character measured on cross of ith and jth 
parents; µ = Population mean; gi (gj) = the general combing ability 
effects of the ith and jth parents, sij = the specific combing ability 
effects of the crosses, eijkl = is the error effect, p, b and c = number 
of parents, blocks and sampled plants, respectively. 

 
 
Estimation of standard heterosis 

 
Standard heterosis or economic heterosis was calculated for the 
characters that showed significant differences for genotypes 
following the method suggested by Falconer and Mackay (1996). 
This was computed as percentage increase or decrease of the 
cross performances over the best standard check. Kolba was used 
as the best standard check. 
 

 

SH (%) =  
 

 
Where,  F1 ═  Mean  value of a cross, SV = Mean value of standard
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Table 3. Combined analyses of variance for  grain yield and yield related traits of 36 diallel crosses and four hybrid checks evaluated at 
Ambo and Kulumsa. 
 

Trait 

Sources of variation 

Loc 

(DF = 1) 

Rep(Loc) 

(DF = 2) 

Blk(Loc,rep) 

(DF = 28) 

Genotype 

(DF = 39) 

Genotype*Loc 

(DF = 39) 

Error 

(DF =50) 
Grand mean SE(m) CV(%) 

GY 228.90** 0.57
ns

 1.20* 4.81** 1.89** 0.62 8.34 ±0.56 9.48 

DA 739.60** 3.70
ns

 3.13
ns

 41.56** 3.40
ns

 2.62 90.32 ±1.14 1.79 

DS 288.90** 6.23
ns

 4.59* 47.64** 3.79
ns

 2.71 92.25 ±1.16 1.78 

ASI 0.20** 0.0005
ns

 0.001
ns

 0.004** 0.003** 0.0015 1.23 ±0.03 3.15 

PH 48546.05** 694.08* 226.27
ns

 951.19** 196.36
ns

 183.59 214.36 ±9.58 6.32 

EPP 0.48** 0.008
ns

 0.03
ns

 0.08** 0.05
 ns

 0.02 1.42 ±0.1 10.85 

ED 1.64** 0.17
 ns

 0.03
ns

 0.11** 0.03** 0.03 4.53 ±0.12 3.54 

TKW 217378.16
 ns

 828.46
ns

 1143.64
ns

 4907.65** 1207.44
ns

 1436.51 343.41 ±26.8 11.04 
 

**Significant at 0.01 level of probability; * = significant at 0.05 level of probability; ns = non-significant; Loc= location; Rep= replication; Blk= block; 
DF= degrees of freedom; SE(m)= standard error of mean; GY= grain yield; DA= number of days to anthesis; DS= number of days to silking; 
ASI= anthesis silking interval; PH= plant height; EPP= number of ears per plant; ED= ear diameter and TKWT =1000-kernel weight. 

 
 
 
check, SH= Standard heterosis expressed as percentage. Variety 
test of significance for percent heterosis was made using the t-test. 
The standard errors of the difference for heterosis and t-value were 
computed as follows (Singh, 1985).  
 
   

t (standard cross) =  

 

SE (d) for SH =  
 

 
Where, SE (d) = standard error of the difference, SH= standard 
heterosis, Me = error mean square, r = number of replications. The 
computed t value was tested against the t tabular-value at error 
degree of freedom . 

 
 
RESULTS AND DISCUSSION 
 
Analyses of variance (ANOVA) 
 
Combined analyses of variances revealed highly 
significant (P<0.01) differences among the 40 genotypes 
including checks for all traits studied under combined 
analyses (Table 3). This indicates the presence of 
inherent variation among the materials, which makes 
selection possible. Desirable genes from these 
genotypes can effectively be utilized to develop high 
performing hybrids. Similarly, several previous studies 
reported significant differences among genotypes for 
grain yield and yield related traits in different sets of 
maize genotypes (Dagne et al., 2007; Demissew, 2014; 
Habtamu et al., 2015; Amare et al., 2016; Tolera et al.,  
and Dufera et al., 2018). 

The interaction between genotypes and locations (G x 
LOC) was significant for grain yield, Anthesis-silking 
interval   and   ear   diameter,   indicating  that  genotypes 

performed differently across locations, which means that 
the relative performances of the genotypes were 
influenced by the varying environmental conditions for 
these traits. On the other hand, days to anthesis, days to 
silking, plant height, number of ears per plant and 
thousand kernel weight showed non-significant difference 
for genotype by location interaction (Table 2), indicating 
that the relative performance of the genotypes for these 
traits was not influenced by the varying environmental 
conditions. Consistent with the present finding, Gudeta 
(2007) reported significant G x LOC interaction for grain 
yield, number of rows per ear and ear diameter and non-
significant G x LOC interaction for number of ears per 
plant. 
 
 
Genotypes performances 
 
The combined means from across locations’ analyses are 
given in Table 3. Overall mean grain yield of the 
genotypes was 8.34 t/ha with a range of 6.16 t/ha to 
11.07 t/ha. Kolba (11.07 t/ha) followed by Jibat (10.91 
t/ha), Wenchi (10.43 t/ha) and Argane (10.15t/ha) had 
higher grain yield, while crosses L5 x L9 (6.16 t/ha) and 
L2 x L9 (6.74 t/ha) showed lower grain yield. The high 
heritability value (0.64) for this trait indicated more 
contributions of genetic factors rather than environmental 
effects on this  trait, implying selection for this character 
could be more effective. In line with this, Dagne et al. 
(2010), Amare et al. (2016); Beyene (2016), Dufera et al. 
(2018) also identified genotypes that performed better 
than the checks used in their studies for grain yield.  

Days to anthesis ranged from 84.25 days (L4 x L6) to 
102 days (L5 x L9) with overall mean of 90.33 days. 
Mean number of days to silking was 92.26 with a range of 
85.5 (L4 x L6)  to  103.5  (L5 x L9).  Most  of  the  crosses 



 

 
 
 
 
showed longest number of days to anthesis and silking. 
This shows that those crosses could be grouped as late 
maturing types. Late maturing crosses are important in 
the breeding programs for development of high yielding 
hybrids in areas that receive sufficient rain fall (Girma et 
al., 2015). The heritability values for both days to 
anthesis and silking were very high (0.92 and 0.93 
respectively) indicating the traits were not greatly 
influenced by environment. Thus, it shows selection for 
these traits could be more effective and easy since the 
genetic variability was detected clearly because of low 
environmental influence (Table 4). Anthesis-silking 
interval ranged from 1.14 days (L2 x L8) to 1.29 days (L4 
x L5) with a mean of 1.23 days (Table 4). In general, all 
crosses exhibited short ASI or short gaps between 
anthesis and silking days which is a desired character for 
good seed setting. The positive ASI observed for all of 
the genotypes studied is an expected result as maize is a 
protoandrous plant in which anthesis normally begins 1-3 
days before silk emergence (Rahman et al., 2013).  

Plant height ranged from 185.25 cm (L2 x L6) to 251.25 
cm (Kolba) with a mean of 214.37 cm. Genotypes with 
shorter plant height could be used as sources of genes 
for the development of shorter statured varieties for 
highland agro-ecology of Ethiopia. In agreement with this 
result, Beyene (2016), Abiy (2017) and Tolera et al. 
(2017) also identified genotypes with short and long plant 
and ear heights. Mean number of ears per plant of 
genotypes was 1.42 ranged from 1.18 (L1 x L7) to 1.74 
(L1 x L3). Seven crosses exhibited higher number of ears 
per plant than the best check, Kolba (Table 4). 
Desirability of higher number of ears for grain yield 
improvement was suggested by various authors such as 
Dagne et al. (2010), Demissew et al. (2011), Girma et al. 
(2015), Ram et al. (2015), Amare et al. (2016).  

The mean for ear diameter ranged from 4.05 to 5.05 
cm with overall mean of 4.53 cm. The cross L3 x L9 (4.05 
cm) had the smallest diameter as compared to other 
hybrids, while cross L4 x L8 (5.05 cm) displayed the 
largest ear diameter. The crosses with wider ear diameter 
could be used for grain yield improvement since 
increasing ear diameter could lead to increase in number 
of rows per ear. Thousand kernel weight ranged from 
214.18 g for (L3 x L9) to 410.9 g for (Jibat) with overall 
mean of 343.41 g.  
 
 
Standard heterosis 
 
The estimate of standard heterosis over the best 
standard check (Kolba) was computed for grain yield and 
yield related traits that showed significant differences 
among genotypes and the result is presented in Table 5. 
Standard heterosis for grain yield over the best check 
Kolba ranged from -44.35%

 
(L5 x L9) to -8.31%

 
(L1 x L3). 

Out of the 36 hybrids studied, none of the hybrids had 
positive and significant as well as negative and significant  
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heterosis over the standard check Kolba (Table 5). All 
hybrids exhibited non-significant and negative standard 
heterosis over the best standard check Kolba. This 
indicates that the check hybrid Kolba was more prolific 
than all the F1 hybrids and indicating lack of significant 
heterosis among the crosses used in the current study. 
The highest negative standard heterosis was manifested 
by L5 x L9 (-44.35 %) followed by L2 x L9 (-39.11

 
%) and 

L1 x L7 (-36.49
 
%) over Kolba for grain yield. Positive 

standard heterosis was considered to be desirable for 
grain yield as it indicates increased yield over the existing 
standard check. In contrast to this finding, several other 
authors reported positive and significant heterosis for 
grain yield over best standard check indicating the 
possibility of increasing yield by exploiting heterotic 
potential of maize genotypes (Tiwari, 2003; Twumasi et 
al., 2003; Amiruzzaman et al., 2010; Wali et al., 2010; 
Habtamu et al., 2015;  Ziggiju and Legesse, 2016; Dufera 
et al., 2018).  

Negative standard heterosis was considered as 
desirable for days to anthesis and silking as it indicates 
earliness of a genotype and the reverse is true for the 
crosses with positive and significant standard heterosis. 
Standard heterosis over best check Kolba ranged from -
3.71 to 16.57% and -5.00 to 15.00%, respectively, for 
days to anthesis and silking which was revealed by 
crosses

 
(L4 x L6) and (L5 x L9), respectively, for both 

traits. Out of the 36 hybrids studied, ten crosses exhibited 
negative and non-significant standard heterosis for days 
to anthesis, while twenty of the hybrids showed 
significant heterosis and the rest six hybrids exhibited 
positive and non-significant heterosis for days to anthesis 
in undesired direction. For days to silking, out of 36 
hybrids, twelve crosses revealed negative heterosis, 
while only two crosses (L4 x L6) and (L6 x L8) revealed 
significant heterosis in desired direction over best 
standard check. Twenty four crosses showed positive 
heterosis over best standard check. Among them, 
seventeen of the crosses revealed significant heterosis in 
undesired direction. Negative heterosis for these traits 
indicated earliness as compared to the standard check 
(Kolba). Similar to  this study, Natol et al. (2017) also 
reported negative and non-significant, and positive and 
significant heterosis for days to anthesis and silking in 
their study on standard heterosis of maize inbred lines for 
grain yield and yield related traits at southern Ethiopia. In 
addition, previous investigators reported significant 
negative and positive standard heterosis for days to 
anthesis and silking over standard check (Bayisa, 2004; 
Mahantesh, 2006; Shushay, 2014; Ziggiju and Legesse, 
2016; Abiy, 2017).  

For anthesis silking interval, standard heterosis ranged 
from -9.52 %

 
(L2 x L8) to 2.38

 
% (L4 x L5)  over Kolba. 

Almost all crosses showed negative standard heterosis 
over the best check for anthesis silking interval, indicating 
the tendency of the crosses to have short interval 
between anthesis and silking dates than  Kolba,  which  is
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Table 4. Mean values of yield and yield related traits of 36 diallel crosses and four commercial checks evaluated at 
Ambo and Kulumsa in 2017.  
 

Genotype 
Traits 

GY DA DS ASI PH EPP ED TKW 

L1*L2 8.80 87.25 88.50 1.21 199.75 1.37 4.53 379.10 

L1*L3 10.05 91.75 94.50 1.27 210.75 1.74 4.50 306.48 

L1*L4 7.87 88.00 90.25 1.25 198.00 1.22 4.88 363.33 

L1*L5 9.03 92.75 95.25 1.26 228.75 1.38 4.58 335.78 

L1*L6 7.09 87.00 89.50 1.26 187.50 1.20 4.53 377.33 

L1*L7 7.03 88.50 90.50 1.24 192.00 1.18 4.43 358.48 

L1*L8 8.25 88.00 89.50 1.21 207.75 1.29 4.83 370.28 

L1*L9 7.49 92.75 95.50 1.27 218.75 1.31 4.70 326.03 

L2*L3 8.96 91.00 93.25 1.25 219.25 1.62 4.35 329.10 

L2*L4 8.85 86.75 88.50 1.23 205.50 1.44 4.60 343.85 

L2*L5 7.48 92.75 94.75 1.24 216.75 1.23 4.45 357.15 

L2*L6 7.44 86.25 87.25 1.19 185.25 1.48 4.35 350.35 

L2*L7 9.06 88.50 90.00 1.22 209.00 1.54 4.40 378.85 

L2*L8 8.07 88.50 88.50 1.14 202.25 1.27 4.65 381.90 

L2*L9 6.74 94.75 96.00 1.21 212.75 1.41 4.40 276.68 

L3*L4 8.55 91.75 94.25 1.26 232.50 1.39 4.48 313.25 

L3*L5 8.00 96.00 98.25 1.25 237.50 1.44 4.40 290.83 

L3*L6 8.75 91.25 92.75 1.22 199.00 1.66 4.33 330.23 

L3*L7 7.41 92.00 94.75 1.27 219.50 1.47 4.25 306.90 

L3*L8 9.68 92.50 95.50 1.28 224.25 1.71 4.43 328.65 

L3*L9 7.34 98.75 100.50 1.23 226.00 1.63 4.05 214.18 

L4*L5 8.03 90.50 93.75 1.29 204.50 1.37 4.43 316.20 

L4*L6 7.54 84.25 85.50 1.21 194.50 1.23 4.58 312.90 

L4*L7 8.78 86.75 89.50 1.27 207.00 1.36 4.75 384.00 

L4*L8 9.41 86.50 87.00 1.17 228.50 1.30 5.05 378.73 

L4*L9 7.59 91.25 93.50 1.25 213.25 1.41 4.58 312.10 

L5*L6 7.29 91.00 92.25 1.21 208.75 1.36 4.48 359.75 

L5*L7 7.54 93.50 96.00 1.26 232.25 1.29 4.63 334.38 

L5*L8 8.13 93.00 95.00 1.24 240.25 1.49 4.73 308.53 

L5*L9 6.16 102.00 103.50 1.22 224.00 1.30 4.58 274.20 

L6*L7 7.18 86.25 87.50 1.21 188.25 1.25 4.45 405.68 

L6*L8 8.01 85.75 86.25 1.17 191.75 1.42 4.63 399.95 

L6*L9 7.62 92.50 94.75 1.25 200.75 1.59 4.43 327.28 

L7*L8 8.23 86.50 89.00 1.26 198.25 1.26 4.65 389.18 

L7*L9 8.42 92.25 94.75 1.26 226.00 1.55 4.40 327.98 

L8*L9 9.26 91.75 93.25 1.22 235.50 1.63 4.70 301.28 

Argane 10.15 87.75 89.50 1.23 222.50 1.48 4.50 383.55 

Kolba 11.07 87.50 90.00 1.26 251.25 1.57 4.55 408.03 

Jibat 10.91 88.75 90.00 1.19 239.75 1.55 4.55 410.90 

Wenchi 10.43 88.50 91.50 1.28 235.00 1.54 4.50 383.18 

Mean 8.34 90.33 92.26 1.23 214.37 1.42 4.53 343.41 

LSD (0.05) 1.12 2.30 2.34 0.055 19.24 0.22 0.23 53.83 

CV (%) 9.48 1.79 1.78 3.15 6.32 10.9 3.54 11.04 

R2 0.95 0.96 0.96 0.88 0.92 0.86 0.88 0.89 

H2 0.64 0.92 0.93 0.12 0.81 0.37 0.76 0.81 

Min 6.16 84.25 85.5 1.14 185.25 1.18 4.05 214.18 

Max 11.07 102 103.5 1.29 251.25 1.74 5.05 410.9 
 

GY= grain yield; DA= number of days to anthesis; DS= number of days to silking; ASI= anthesis silking interval; PH= plant height; 
EH= ear height; EPP= number of ears per plant; EL= ear length; ED= ear diameter; RPE= number of kernel rows per ear; KPR= 
number of kernels per row; and TKWT =1000-kernel weight; R

2 
= Coefficient of determination; H

2
= heritability in broad sense; 

Min= minimum; Max= maximum.  

  



 

 
 
 
 
desirable for synchronization of anthesis and silking, and 
for seed setting. In line with this study, Dufera et al. 
(2018) reported negative standard heterosis over best 
checks in their study on combining ability, heterosis and 
heterotic grouping of quality protein maize inbred lines at 
bako, western Ethiopia. The magnitude of standard 
heterosis for plant height ranged from -26.27

 
% (L2 x L6) 

to -4.38
 
(L5 x L8) (Table 4). For this trait, all of the 

crosses showed negative and non-significant heterosis 
over the best check. This implies that all crosses were 
shorter in plant height than kolba, which is favorable trait 
for lodging resistance. This result is in agreement with the 
findings of Shushay (2014).  

For number of ears per plant, standard heterosis 
among hybrids varied from -24.84

 
(L1 x L7) to 10.83

 
% 

(L1 x L3). Seven hybrids showed positive standard 
heterosis over the check kolba. This result indicated the 
prolificacy of the new hybrids over the standard check, 
Kolba. The rest 29 crosses showed negative standard 
heterosis over best check and are undesirable for high 
number of ear per plant. Similarly significant positive and 
negative standard heterosis was observed by Koppad 
(2007), Shushay (2014) and Ziggiju and Legesse, 2016 
for number of ears per plant. 

Standard heterosis for ear diameter varied between -
10.99 (L3 x L9) and 10.99 % (L4 x L8) over kolba (Table 
5). Sixteen crosses showed positive heterosis over best 
standard check. Among them only one cross (L4 x L8) 
showed significant and positive standard heterosis over 
kolba. Among twenty crosses those showed negative 
standard heterosis, only one hybrid (L3 x L9) had 
negative and significant standard heterosis over Kolba for 
ear diameter. Positive standard heterosis shows that the 
F1 crosses had larger ear diameter than the standard 
check which is important to increase number of kernel 
rows per ear and thus important to increase grain yield 
while negative heterosis depicts that the check hybrids 
had larger ear diameter than the F1 hybrids. Similar 
result was previously reported by Beyene (2016). 
Standard heterosis for thousand kernel weight varied 
from -47.51

 
(L3 x L9) to -0.58

 
% (L6 x L7). All of the 

crosses showed negative and non-significant standard 
heterosis over the standard check Kolba (Table 5). 
Similar to the current study, both desirable and 
undesirable heterosis for thousand kernel weight in maize 
has been reported by previous investigators 
(Amiruzzaman et al., 2010; Shushay, 2014). 
 
 
Combining ability analyses  
 
Combining ability analysis across the two locations is 
presented in Table 6. The results showed that mean 
squares due to GCA and SCA were significant for grain 
yield, days to anthesis, number of ears per plant and ear 
diameter. This indicates that both additive and non-
additive gene actions are important in  the  inheritance  of  
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these traits. Reports on similar studies by Dagne et al. 
(2007) showed that both GCA and SCA mean squares 
were significant for ear height, plant height and days to 
maturity. Similarly, Yoseph et al. (2011) observed 
significant GCA and SCA for anthesis date, anthesis 
silking interval, ear height and plant height in elite maize 
inbred lines developed by CIMMYT for insect resistance.  
The contribution of GCA variances was much greater 
than that of SCA variances for most of the traits except 
for grain yield at Kulumsa and across locations, number 
of ears per plant at Ambo and anthesis silking interval at 
both Ambo and Kulumsa, which showed higher 
contribution of SCA variance for these traits at these 
particular locations. The higher percentage relative 
contribution of GCA sum of squares over SCA sum of 
squares showed the predominant role of additive gene 
action over non-additive gene action in the inheritance of 
the traits studied. The breeding implication of this 
predominance of additive gene action is that the 
genotypes having this character can be used to develop 
hybrid and/or synthetic varieties. Similar results were 
reported by other authors in their study on combining 
ability for yield and yield related traits in maize (Chandel 
and Mankotia, 2014; Amare et al., 2016; Beyene, 2016; 
Bitew et al., 2017 and Tolera et al., 2017). They reported 
predominance of additive gene action over non-additive 
for most of the traits they studied. 

GCA and SCA mean squares were significant for grain 
yield across the two locations. This significant GCA and 
SCA mean squares indicated the importance of both 
additive and non-additive gene actions in governing grain 
yield. This has breeding implications, since hybridization 
methods such as reciprocal recurrent selection which 
utilizes both additive and non-additive gene effects 
simultaneously, could be useful in genetic improvement 
of the population characters under consideration. Similar 
to the present study Hadji (2004) found highly significant 
mean squares due to GCA and SCA for grain yield in 
diallel study of quality protein maize inbred lines. In 
addition, Dagne et al., 2011; Demissew et al., 2011; 
Shushay et al., 2013 and Bitew et al., 2017 also reported 
the importance of both additive and non-additive gene 
actions in governing grain yield in maize. 

For number of days to anthesis and silking, mean 
squares due to GCA were significant at across the two 
locations. Mean square due to SCA was significant for 
days to anthesis but for days to silking, mean square due 
to SCA was non-significant. In agreement with this study, 
Tolera et al. (2017) found the importance of both additive 
and non-additive gene effects for days to anthesis. GCA 
sum of squares were larger than SCA sum of squares for 
anthesis and silking dates. In line with this study, Ahmad 
and Saleem (2003) reported the preponderance of 
additive gene action in the inheritance of days to anthesis 
and silking.  

For plant height, mean squares due to GCA were 
highly significant (p<0.01). While it showed non-significant 
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Table 5. Standard heterosis of F1 hybrids over Kolba for grain yield and related traits evaluated at Kulumsa and Ambo in 2017. 

 

Crosses GY DA DS ASI PH EPP ED TKW 

L1*L2 -20.51
ns

 -0.29
ns

 -1.67
ns

 -3.97
ns

 -20.5
ns

 -12.74
ns

 -0.44
ns

 -7.09
ns

 

L1*L3 -8.31
ns

 4.86* 5.00** 0.79
ns

 -16.12
ns

 10.83
ns

 -1.10
ns

 -24.89
ns

 

L1*L4 -28.91
ns

 0.57
ns

 0.28
ns

 -0.79
ns

 -21.19
ns

 -22.29
ns

 7.25
ns

 -10.96
ns

 

L1*L5 -18.43
ns

 6.00** 5.83** 0.00
ns

 -8.96
ns

 -12.10
ns

 0.66
ns

 -17.71
ns

 

L1*L6 -35.95
ns

 -0.57
ns

 -0.56
ns

 0.00
ns

 -25.37
ns

 -23.57
ns

 -0.44
ns

 -7.52
ns

 

L1*L7 -36.49
ns

 1.14
ns

 0.56
ns

 -1.59
ns

 -23.58
ns

 -24.84
ns

 -2.64
ns

 -12.14
ns

 

L1*L8 -25.47
ns

 0.57
ns

 -0.56
ns

 -3.97
ns

 -17.31
ns

 -17.83
ns

 6.15
ns

 -9.25
ns

 

L1*L9 -32.34
ns

 6.00** 6.11** 0.79
ns

 -12.94
ns

 -16.56
ns

 3.30
ns

 -20.10
ns

 

L2*L3 -19.06
ns

 4.00* 3.61
ns

 -0.79
ns

 -12.74
ns

 3.18
ns

 -4.40
ns

 -19.34
ns

 

L2*L4 -20.05
ns

 -0.86
ns

 -1.67
ns

 -2.38
ns

 -18.21
ns

 -8.28
ns

 1.10
ns

 -15.73
ns

 

L2*L5 -32.43
ns

 6.00** 5.28** -1.59
ns

 -13.73
ns

 -21.66
ns

 -2.20
ns

 -12.47
ns

 

L2*L6 -32.79
ns

 -1.43
ns

 -3.06
ns

 -5.56
ns

 -26.27
ns

 -5.73
ns

 -4.40
ns

 -14.14
ns

 

L2*L7 -18.16
ns

 1.14
ns

 0.00
ns

 -3.17
ns

 -16.82
ns

 -1.91
ns

 -3.30
ns

 -7.15
ns

 

L2*L8 -27.10
ns

 1.14
ns

 -1.67
ns

 -9.52
ns

 -19.50
ns

 -19.11
ns

 2.20
ns

 -6.40
ns

 

L2*L9 -39.11
ns

 8.29** 6.67** -3.97
ns

 -15.32
ns

 -10.19
ns

 -3.30
ns

 -32.19
ns

 

L3*L4 -22.76
ns

 4.86* 4.72* 0.00
ns

 -7.46
ns

 -11.46
ns

 -1.54
ns

 -23.23
ns

 

L3*L5 -27.73
ns

 9.71** 9.17** -0.79
ns

 -5.47
ns

 -8.28
ns

 -3.30
ns

 -28.72
ns

 

L3*L6 -20.96
ns

 4.29* 3.06
ns

 -3.17
ns

 -20.80
ns

 5.73
ns

 -4.84
ns

 -19.07
ns

 

L3*L7 -33.06
ns

 5.14** 5.28** 0.79
ns

 -12.64
ns

 -6.37
ns

 -6.59
ns

 -24.78
ns

 

L3*L8 -12.56
ns

 5.71** 6.11** 1.59
ns

 -10.75
ns

 8.92
ns

 -2.64
ns

 -19.45
ns

 

L3*L9 -33.69
ns

 12.86** 11.67** -2.38
ns

 -10.05
ns

 3.82
ns

 -10.99** -47.51
ns

 

L4*L5 -27.46
ns

 3.43
ns

 4.17* 2.38
ns

 -18.61
ns

 -12.74
ns

 -2.64
ns

 -22.51
ns

 

L4*L6 -31.89
ns

 -3.71
ns

 -5.00** -3.97
ns

 -22.59
ns

 -21.66
ns

 0.66
ns

 -23.31
ns

 

L4*L7 -20.69
ns

 -0.86
ns

 -0.56
ns

 0.79
ns

 -17.61
ns

 -13.38
ns

 4.40
ns

 -5.89
ns

 

L4*L8 -15.00
ns

 -1.14
ns

 -3.33
ns

 -7.14
ns

 -9.05
ns

 -17.20
ns

 10.99** -7.18
ns

 

L4*L9 -31.44
ns

 4.29* 3.89* -0.79
ns

 -15.12
ns

 -10.19
ns

 0.66
ns

 -23.51
ns

 

L5*L6 -34.15
ns

 4.00* 2.50
ns

 -3.97
ns

 -16.92
ns

 -13.38
ns

 -1.54
ns

 -11.83
ns

 

L5*L7 -31.89
ns

 6.86** 6.67** 0.00
ns

 -7.56
ns

 -17.83
ns

 1.76
ns

 -18.05
ns

 

L5*L8 -26.56
ns

 6.29** 5.56** -1.59
ns

 -4.38
ns

 -5.10
ns

 3.96
ns

 -24.39
ns

 

L5*L9 -44.35
ns

 16.57** 15.00** -3.17
ns

 -10.85
ns

 -17.20
ns

 0.66
ns

 -32.80
ns

 

L6*L7 -35.14
ns

 -1.43
ns

 -2.78
ns

 -3.97
ns

 -25.07
ns

 -20.38
ns

 -2.20
ns

 -0.58
ns

 

L6*L8 -27.64
ns

 -2.00
ns

 -4.17* -7.14
ns

 -23.68
ns

 -9.55
ns

 1.76
ns

 -1.98
ns

 

L6*L9 -31.17
ns

 5.71** 5.28** -0.79
ns

 -20.10
ns

 1.27
ns

 -2.64
ns

 -19.79
ns

 

L7*L8 -25.65
ns

 -1.14
ns

 -1.11
ns

 0.00
ns

 -21.09
ns

 -19.75
ns

 2.20
ns

 -4.62
ns

 

L7*L9 -23.94
ns

 5.43** 5.28** 0.00
ns

 -10.05
ns

 -1.27
ns

 -3.30
ns

 -19.62
ns

 

L8*L9 -16.35
ns

 4.86* 3.61
ns

 -3.17
ns

 -6.27
ns

 3.82
ns

 3.30
ns

 -26.16
ns

 

Kolba (mean) 11.07 87.50 90.00 2.50 251.25 1.57 4.55 408.03 

SE(d) 0.79 1.62 1.65 0.04 13.55 0.14 0.17 37.90 
 

**Significant at 0.01 level of probability; * = significant at 0.05 level of probability; ns = non-significant; SE(d)= standard error of difference; 
GY= grain yield; DA= number of days to anthesis; DS= number of days to silking; ASI= anthesis silking interval; PH= plant height; EPP= 
number of ears per plant; ED= ear diameter and TKWT =1000-kernel weight. 

 
 
 
SCA mean square across locations (Table 6). In this 
study, additive gene action than non-additive gene action 
was important for plant height. In consistent with this 
finding, Dagne (2002), Hadji (2004) and Demissew et al. 
(2011) reported the importance of additive and non-
additive gene action in the inheritance of plant height. 
Combining  ability   analyses   revealed  highly  significant 

GCA and SCA effects for ear per plant. Similar to the 
present study, Malik et al. (2004) reported significant 
GCA and SCA mean squares for number of ears per 
plant in a diallel study of nine quality protein maize (QPM) 
inbred lines.  

Both GCA and SCA mean squares for ear diameter 
were   significantly   different   (p<0.05)   across   the  two 
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Table 6. Across locations combing ability analyses of variance for grain yield and other agronomic traits of 36 diallel crosses evaluated 
at Ambo and Kulumsa (2017). 
 

Source of variation 
Mean squares 

DF GY DA DS PH EPP ED TKW 

Location (LOC)   1 201.17** 720.03** 315.06** 43646.17** 0.29** 1.65** 189667.5** 

Replication (LOC)  2 0.71
 ns

 5.14
 ns

 8.26
 ns

 730.03* 0.0042
 ns

 0.17** 1393.92
 ns

 

Crosses 35 3.12** 57.57** 66.16** 952.29** 0.09** 0.14** 6551.29** 

GCA 8 5.89* 235.78** 274.24** 3189.48** 0.23** 0.47** 22818.03** 

SCA 27 2.30* 4.76* 4.51
 ns

 289.42
 ns

 0.05** 0.04* 1731.52
 ns

 

GCA*LOC 8 3.22** 7.40* 3.87
 ns

 263.14
 ns

 0.09** 0.03
 ns

 953.31
 ns

 

SCA*LOC 27 1.50* 4.45
 ns

 3.14
 ns

 239.98
 ns

 0.04* 0.03
 ns

 1725.43
 ns

 

Error 70 0.81 2.87 3.33 189.83 0.02 0.03 1331.38 

% GCA  43.18 93.62 94.74 76.55 55.91 76.54 79.61 

% SCA  56.82 6.38 5.26 23.45 44.09 23.46 20.39 
 

**Significant at 0.01 level of probability, * = significant at 0.05 level of probability, ns = non-significant, GY= grain yield, DA= number of days to 
anthesis, DS= number of days to silking, PH= plant height, EPP= number of ears per plant, ED= ear diameter and TKW=1000-kernel weight.  

 
 
 
locations indicating that both additive and non-additive 
gene effects were important in agreement with the study 
of Dagne (2002), Hadji (2004) and Gudeta (2007). Mean 
squares due to GCA for thousand kernel weight were 
highly significant (p<0.01) across locations (Table 6) but 
mean squares due to SCA were not significant. This 
study showed additive than non-additive gene actions 
were important in governing this trait. In contrast to this 
finding, Dagne (2002), Dagne et al. (2007), Gudeta 
(2007) and Beyene (2016) reported the importance of 
both additive and non-additive gene actions for this trait. 

GCA × Loc mean squares were significant for grain 
yield, days to anthesis and ears per plant indicating that 
GCA effects associated with parents were not consistent 
for these traits over the two environments (Table 6). But 
the interaction was not significant for days to silking, plant 
height, ear diameter and thousand kernel weight, 
indicating that GCA effects associated with parents were 
consistent over the two environments. SCA × Loc mean 
squares were significant for grain yield and ear per plant 
showing that SCA effects of these traits associated with 
crosses were not consistent over the two environments, 
while, SCA × Loc showed non-significant mean squares 
for the rest of traits, indicating that SCA effects 
associated with crosses were consistent over the two 
environments. Similar findings were reported by Dagne et 
al. (2007) in their study on heterosis and combining ability 
for grain yield and its component in selected maize inbred 
lines. 
 
 
General combining ability effects  
 

The general combining ability effects of parental inbred 
lines were computed for the traits exhibited significant 
general   combining    ability    (GCA)   mean   squares  in 

combining ability analyses of variance (Table 6). The 
Estimates of GCA effects for parental lines showed 
significant differences for various traits. General 
combining ability effects of grain yield and related 
agronomic traits for across locations analyses are 
presented in Table 7. 

GCA effects of lines for grain yield ranged between -
0.59 t/ha (L9) to 0.61 t/ha (L3) (Table 7). Five inbred lines 
showed positive GCA effects for grain yield. Two inbred 
lines L3 (0.61 t/ha) and L8 (0.62 t/ha) showed positive 
and significant GCA effects. This indicates the potential 
advantage of these inbred lines for the development of 
high-yielding hybrids and/or synthetic varieties, as the 
lines can contribute desirable alleles in the synthesis of 
new varieties. Four inbred lines (L5, L6, L7 and L9) 
showed negative and non-significant GCA (Table 7), 
indicating these lines were poor combiners for grain yield. 
Results of the current study are similar to the findings of 
several authors (Kanagarasu et al., 2010; Yoseph et al., 
2011; Girma et al., 2015; Amare et al., 2016; Beyene, 
2016; Dufera et al., 2018) who reported significant 
positive and negative GCA effects for grain yield in maize 
germplasm.  

GCA effects of lines for days to anthesis ranged 
between -2.90 (L6) to 4.49 (L9), while for days to silking it 
ranged from -3.44 (6) to 4.56 (L9) (Table 7). Six inbred 
lines (L1, L2, L4, L6, L7 and L8) showed negative and 
significant GCA effects for days to anthesis. This 
indicates that these lines were good general combiners 
for early maturity while three inbred lines (L3, L5 and L9) 
exhibited significant and positive GCA effects for days to 
anthesis and that these lines have tendency to increase 
late maturity. L9 had higher and positive GCA effect for 
days to silking (4.45) whereas L6 had lower and negative 
GCA effect (-3.44). All the three inbred lines which 
showed positive GCA effects had significant GCA  effects  
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Table 7. Estimates of general combining ability effects (GCA) of nine inbred lines across the two locations 
(2017). 
 

Line GY DA DS PH EPP ED TKW 

L1 0.14
 ns

 -1.22* -0.90* -7.35
 ns

 -0.09** 0.10** 16.66
 ns

 

L2 0.09
 ns

 -1.26* -1.87** -6.32
 ns

 0.01
 ns

 -0.07* 13.82
 ns

 

L3 0.61* 2.92** 3.42** 10.58** 0.19** -0.21** -40.08** 

L4 0.26
 ns

 -2.69** -2.51** -1.57
 ns

 -0.08* 0.15** 3.45
 ns

 

L5 -0.44
 ns

 3.85** 4.14** 14.00** -0.06
 ns

 0.0008
 ns

 -17.62
 ns

 

L6 -0.54
 ns

 -2.90** -3.44** -19.85** -0.02
 ns

 -0.07* 23.33* 

L7 -0.15
 ns

 -1.47** -1.12** -3.21
ns

 -0.06
 ns

 -0.04
 ns

 26.46** 

L8 0.62* -1.72** -2.26** 4.83
 ns

 0.01
ns

 0.20** 22.61* 

L9 -0.59
 ns

 4.49** 4.56** 8.89* 0.08* -0.06
 ns

 -48.64** 

SE(gi) 0.31 0.57 0.44 4.45 0.034 0.037 10.01 
 

**Significant at 0.01 level of probability, * = significant at 0.05 level of probability, ns = non-significant, GY= grain yield, 
DA= number of days to anthesis, DS= number of days to silking, PH= plant height, EPP= number of ears per plant, ED= 
ear diameter and TKW=1000-kernel weight.  

 
 
 
for days to silking while six inbred lines exhibited 
significant and negative GCA effects for this trait. L1 (- 
0.90), L2 (-1.87), L4 (-2.51), L6 (-3.44), L7 (-1.12) and L8 
(-2.26) were the best general combiners for early maturity 
(Table 7). Lines with negative and significant GCA effects 
for days to anthesis and silking are desirable when the 
objective is to develop early maturing hybrids, as hybrids 
generated using these lines tend to flower earlier. 
Similarly, lines with positive and significant GCA effects 
for days to flowering are desirable when the objective is 
to develop late maturing hybrids. Thus, there is possibility 
of making effective selection for these traits, which could 
lead to considerable genetic improvement for earliness 
and lateness. Desirability of negative GCA for days to 
anthesis and silking for earliness and desirability of 
positive GCA for these traits for lateness was suggested 
by various authors such as Shushay et al. (2013), Umar 
et al. (2014), Girma et al. (2015), Beyene, (2016) and 
Abiy (2017).  

Even though five inbred lines showed negative GCA 
effects for plant height in combined analyses across 
locations (Table 7), only one inbred line L6 (-19.85) 
showed significant GCA effect, implying the tendency of 
this line to reduce plant height, which is very important for 
development of genotypes resistant to lodging. All the 
four inbred lines that showed positive GCA (L3, L5, L8 
and L19) were poor general combiners for short plant 
height as they showed positive and significant GCA 
effects. In line with the present study, Dagne et al. 
(2010), Demissew et al. (2011) and Dufera et al. (2018) 
found significant positive and negative GCA effects for 
plant height.  

For number of ears per plant, four inbred lines showed 
positive GCA effects among them two inbred lines L3 
(0.19) and L9 (0.08) had significant GCA effects. L3 had 
positive and highly significant GCA effect for number of 
ears per plant, hence, it  was the  best  general  combiner 

for prolificacy. Two inbred lines L1 (-0.09) and L4 (-0.08) 
showed significantly negative GCA effects for ears per 
plant, hence are considered as poor combiners for 
number of ears per plant. L1 had the smallest GCA effect 
of -0.09 for ears per plant. Similar to the present findings, 
Dagne et al. (2007) reported significant positive and 
negative GCA effects for number of ears per plant.  

In combined analyses across the two locations, four 
inbred lines showed positive GCA effects for ear diameter 
among them three inbred lines had significant GCA 
effects. L1 (0.1), L4 (0.15) and L8 (0.20) were the best 
general combiners for ear diameter, that is these lines 
have the tendency to increase ear diameter as they had 
highly significant and positive GCA effect (Table 7). On 
the other hand, three inbred lines had significantly 
negative GCA effects. The present study is in agreement 
with Melkamu (2013), Rahman et al. (2013) and Habtamu 
(2015) who reported significant positive and negative 
GCA effects for ear diameter. 

Significantly positive and negative GCA effects were 
obtained for thousand kernel weight across the two 
locations. From a total of six inbred lines which showed 
positive GCA effects for thousand-kernel weight, three of 
the inbred lines L6 (23.33), L7 (26.46) and L8 (22.61) 
showed significant and positive GCA effects, indicating 
that the inbred lines were the best general combiners for 
thousand-kernel weight. On the other hand, L3 (-40.08) 
and L9 (-48.64) showed negative and significant GCA 
effects, which are undesirable. In support of this findings, 
Amiruzzaman et al. (2010) and Demissew et al. (2011) 
recorded significant positive and negative GCA effects for 
thousand kernel weights. 
 
 
Specific combining ability effects  
 
Specific  combining   ability   effects  for  grain  yield   and  
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Table 8. Estimates of specific combining ability effects (SCA) of 36 diallel crosses 
evaluated at Ambo and Kulumsa in 2017. 
 

Crosses GY DA EPP ED 

L1*L2 0.47
 ns

 -0.84
 ns

 0.04
 ns

 -0.032
 ns

 

L1*L3 1.47* -0.52
 ns

 0.22** 0.08
 ns

 

L1*L4 -0.64
 ns

 1.34
 ns

 -0.03
 ns

 0.09
 ns

 

L1*L5 1.23
 ns

 -0.45
 ns

 0.12
 ns

 -0.06
 ns

 

L1*L6 -0.59
 ns

 0.55
 ns

 -0.11
 ns

 -0.036
 ns

 

L1*L7 -1.27
 ns

 0.63
 ns

 -0.09
 ns

 -0.16
 ns

 

L1*L8 -0.60
 ns

 0.38
 ns

 -0.05
 ns

 -0.0071
 ns

 

L1*L9 -0.15
 ns

 -1.09
 ns

 -0.09
 ns

 0.13
 ns

 

L2*L3 0.18
 ns

 -1.23
 ns

 0.0012
 ns

 0.10
 ns

 

L2*L4 0.39
 ns

 0.13
 ns

 0.101
 ns

 -0.01
 ns

 

L2*L5 -0.27
 ns

 -0.41
 ns

 -0.13
 ns

 -0.007
 ns

 

L2*L6 -0.21
 ns

 -0.16
 ns

 0.07
 ns

 -0.035
 ns

 

L2*L7 1.02
 ns

 0.66
 ns

 0.17* -0.014
 ns

 

L2*L8 -0.73
 ns

 0.91
 ns

 -0.16* -0.007
 ns

 

L2*L9 -0.86
 ns

 0.95
 ns

 -0.09
 ns

 0.0036
 ns

 

L3*L4 -0.39
 ns

 0.95
 ns

 -0.13
 ns

 0.00
 ns

 

L3*L5 -0.24
 ns

 -1.34
 ns

 -0.11
 ns

 0.08
 ns

 

L3*L6 0.61
 ns

 0.66
 ns

 0.07
 ns

 0.08
 ns

 

L3*L7 -1.33
 ns

 -0.02
 ns

 -0.09
 ns

 -0.03
 ns

 

L3*L8 0.38
 ns

 0.73
 ns

 0.09
 ns

 -0.096
 ns

 

L3*L9 -0.76
 ns

 0.77
 ns

 -0.05
 ns

 -0.21* 

L4*L5 0.11
 ns

 -1.23
 ns

 0.102
 ns

 -0.26** 

L4*L6 -0.28
 ns

 -0.73
 ns

 -0.09
 ns

 -0.04
 ns

 

L4*L7 0.57
 ns

 0.34
 ns

 0.08
 ns

 0.11
 ns

 

L4*L8 0.43
 ns

 0.34
 ns

 -0.04
 ns

 0.16
 ns

 

L4*L9 -0.19
 ns

 -1.13
 ns

 0.00053
 ns

 -0.05
 ns

 

L5*L6 0.18
 ns

 -0.52
 ns

 0.03
 ns

 0.014
 ns

 

L5*L7 0.04
 ns

 0.55
 ns

 -0.0063
 ns

 0.14
 ns

 

L5*L8 -0.14
 ns

 0.30
 ns

 0.125
 ns

 -0.007
 ns

 

L5*L9 -0.91
 ns

 3.09* -0.128
 ns

 0.104
 ns

 

L6*L7 -0.21
 ns

 0.05
 ns

 -0.09
 ns

 0.032
 ns

 

L6*L8 0.15
 ns

 -0.19
 ns

 0.0087
 ns

 -0.04
 ns

 

L6*L9 0.66
 ns

 0.34
 ns

 0.12
 ns

 0.025
 ns

 

L7*L8 -0.33
 ns

 -0.88
 ns

 -0.10
 ns

 -0.04
 ns

 

L7*L9 1.07
 ns

 -1.34
 ns

 0.12
 ns

 -0.03
 ns

 

L8*L9 1.14
 ns

 -1.58
 ns

 0.13
 ns

 0.03
 ns

 

SE(sij) 0.75 1.39 0.083 0.09 
 

**Significant at 0.01 level of probability, * = significant at 0.05 level of probability, ns = non-
significant, GY= grain yield, DA= number of days to anthesis, DS= number of days to silking, PH= 
plant height, EPP= number of ears per plant, ED= ear diameter and TKW=1000-kernel weight.  

 
 
 

related agronomic traits for across location is presented 
in Table 8. The crosses showed considerable variation in 
their SCA effects for the different traits. 

In combined analyses across the two locations, positive 
SCA effects were found in seventeen of the crosses for 
grain yield. The cross L1 x L3 was the only best positive 
and significant (p<0.05) cross combination with SCA 
value of 1.47. Thus, this cross  could  be  selected  for  its 

specific combining ability to improve grain yield. Crosses 
with higher value of SCA effects also showed higher 
values of mean grain yield, indicating good 
correspondence between SCA effects and mean grain 
yield. Hence such cross combinations could effectively be 
exploited in hybrid breeding  program in  maize  research.  
Nineteen crosses showed negative SCA effects for grain 
yield (Table 8) which  are  undesirable  as  these  crosses 
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showed a tendency to reduce grain yield performance. In 
line with the current finding, Kamara et al. (2014), Girma 
al. (2015), Ram et al. (2015), Bullo and Dagne (2016) 
reported significant positive and negative SCA for grain 
yield. They suggested that, when high yielding specific 
combinations are desired, especially in hybrid maize 
development, SCA effects could help in the selection of 
parental material for hybridization. 

For days to anthesis, only one cross L5 x L9 (3.09) 
showed positive and significant SCA effect (Table 8). 
Thus, this cross could be used for late maturity for the 
locations with sufficient rainfall. In agreement with this 
finding several researchers reported significant positive 
and negative SCA effects for days to anthesis 
(Kanagarasu et al., 2010, Dagne et al., 2011, Aminu and 
Izge, 2013; Aminu et al., 2014).  

Positive SCA effects were found in eighteen of the 
crosses for ear per plant. The crosses L1 x L3 and L2 x 
L7 were the two best positive and significant cross 
combinations with SCA values of 0.22 and 0.17, 
respectively. Thus, these crosses could be selected for 
their specific combining ability to improve number of ears 
per plant. Eighteen crosses showed negative SCA effects 
in undesired direction for ear per plant with only one 
significant and negative SCA, L2 x L8 (-0.16) (Table 8). 
This indicates that this hybrid combination is poor for 
number of ears per plant. Similar results were reported by 
Berhanu (2009) and Bello and Olawuyi (2015). They 
indicated the capacity of the crosses to produce hybrids 
having increased number of ears per plant.  

Sixteen of the crosses showed positive SCA effects for 
ear diameter but none of them were significant (Table 8). 
On other hand, twenty of the crosses showed negative 
SCA effects, but only two of the crosses L3 x L9 (-0.21) 
and L4 x L5 (-0.26) showed significant and negative SCA 
effects for this trait. This indicates that none of these 
crosses were significantly good specific combinations for 
ear diameter. Amiruzzaman et al. (2010) found significant 
positive and negative SCA effects for ear diameter. 
 
 
Conclusion 
 
From the study, it can be concluded that better performing 
inbred lines with desirable GCA, cross combinations with 
desirable SCA effects and crosses with noticeable level 
of heterosis above the standard check for grain yield and 
other grain yield related traits were successfully 
identified. These genotypes constitute a source of 
valuable genetic materials that could be successively 
used for future breeding work in the development of 
maize cultivars with desirable traits’ composition for 
highland sub-humid agro-ecology of Ethiopia. 
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Good agricultural practices are an effective means of minimizing pre-harvest aflatoxin contamination in 
peanuts. A field experiment was conducted to evaluate the effect of gypsum on pod yield and aflatoxin 
contamination in three peanut cultivars (Kadononga, MGV 4 and MGV 5) in Zambia. The experiment was 
conducted in Chongwe and Lusaka districts. Gypsum (15.6 % calcium) was applied at rates of 0 and 400 
kg/ha at flowering stage. Although gypsum had no significant effect on aflatoxin contamination, there 
were significant differences (p = 0.009) in cultivar susceptibility to aflatoxin contamination. The cultivar 
with the smallest kernels had 18.8% lower aflatoxin content than the large-kernelled cultivar. 
Additionally, gypsum did not have a clear effect on pod yield. For instance, gypsum was associated 
with 44.8% more grain-filled pods in Kadononga (p = 0.005) at the site in Lusaka, but this result did not 
apply to the other two cultivars. At the site in Chongwe, gypsum was associated with 34.6% higher pod 
yield of MGV 5 only (p = 0.006). These results further suggest that plant factors such as kernel size may 
have an influence on natural resistance to aflatoxin contamination in peanuts. 
 
Key words: Aflatoxin, gypsum, peanut cultivar, pod-yield, Zambia. 

 
 
INTRODUCTION 
 
The prevalence of high aflatoxin contamination in 
peanuts is a recurrent problem in most tropical climates 
including Zambia (Njoroge et al., 2017). This has 
prompted concerted efforts to combat aflatoxin 
contamination  at   various   stages  of  the  peanut  value 

chain. In the pre-harvest stages, there is need to 
implement good agricultural practices to minimize 
contamination during crop growth. Measures that 
minimize plant stress especially during the pod 
development  stage  are recommended so as to minimize
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colonization of pods by toxigenic Aspergillus fungi and 
subsequent aflatoxin contamination in kernels (Waliyar et 
al., 2013; Torres et al., 2014). 

One of the critical elements in the development of 
sound groundnut pods and kernels is calcium (Cox et al., 
1976; Jain et al., 2011). Well-developed mature pods are 
not easily perforated by insects and this minimizes the 
entry of fungi into the seed tissue. It is on this principle 
that calcium-containing soil amendments such as 
gypsum are used to minimize pre-harvest aflatoxin 
contamination in peanuts (Reding et al., 1993; 
Gebreselassie et al., 2014). Additionally, amending soils 
with gypsum at the rate of 250 kg/ha was associated with 
higher grain yields compared with the control (Bairagi et 
al., 2017). According to Kabir et al. (2013) amending the 
soil with gypsum as a source of calcium resulted in higher 
number of pods per plant and 100 pod weights. 
Therefore, sufficient calcium fertilization in peanuts can 
both minimize aflatoxin contamination and increase 
kernel yield. 

However, cultivar response to calcium inputs partly 
depends on kernel size. Large seeded cultivars require 
higher inputs of calcium than small-seeded kernels 
(Jordan et al., 2014). The objective of this study was to 
assess the effect of gypsum amendment on kernel yield 
and pre-harvest aflatoxin contamination on aflatoxin-
susceptible cultivars. Pod-yield and aflatoxin 
contamination in three peanut cultivars of Zambia were 
evaluated following a gypsum amendment on two soils 
with contrasting exchangeable calcium content. 
 
 
MATERIALS AND METHODS 
 
Location and soil properties 
 
A field experiment was conducted at the University of Zambia 
(UNZA), Field Research Station (15° 28.646’ S, 28° 20. 278’ E) in 
Lusaka district and at Kasisi Agricultural Training Centre 
(KATC15°14.989’ S, 28° 29.013’ E) in Chongwe district. The 
experiment was done under rain-fed conditions from mid-December 
2016 to April 2017. Both research sites are situated in the agro-
ecological region II of Zambia with mean annual rainfall ranging 
from 800 to 1000 mm (Soil Survey Branch, 2002). The two research 
sites were characterised by soil with contrasting chemical properties 
in terms of soil pH and exchangeable calcium content. The soil at 
KATC was characterised by strong acidity (pH = 4.22) and very low 
exchangeable calcium (0.06 cmol/kg) while the soil at UNZA had 
near neutral pH of 6.98 and high exchangeable calcium content of 
5.14 cmol/kg. It should be noted that most acidic soils are 
associated with calcium deficiency (Brady and Weil, 2010). 

 
 
Treatments and experimental design 
 

The treatments in the experiment were two rates of gypsum and 
three cultivars. The cultivars were: MGV 5, MGV 4 and Kadononga. 
The chosen cultivars were among the most popular ones among 
small-holder farmers and seed companies. MGV 5 and MGV 4 were 
among the most common commercial cultivars while Kadononga 
was among the most common local landrace mostly preferred for its 
early maturity  and  ‘tasty’  kernels.  All  the  three  cultivars  have  a  
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bunch type growth habit. MGV 5 and MGV 4 are Virginia market 
types taking between 120 and 130 days to physiological maturity 
with potential yields of 2.5 to 3.0 metric ton/ha and 1.5 to 2.5 metric 
ton/ha, respectively. Kadononga is a Spanish type that takes 
between 90 and 100 days to maturity with a yield potential of 1.0 to 
1.5 metric ton/ha. In terms of seed size, MGV 5 is large-seeded; 
MGV 4 is medium-seeded while Kadononga is a small-seeded 
cultivar. The treatments were laid out in split-plot design with 
gypsum as the main plot factor and cultivar as the sub-plot factor, 
respectively. The experimental plots measured 4 m by 4 m with a 1 
m isle between plots. Each factor was replicated thrice resulting in 
18 experimental plots. Gypsum was applied on the soil surface 
covering the entire plant row span at flowering stage rates of 0 and 
400 kg/ha. The time of application and the rate of 400 kg/ha of 
gypsum were adopted from the literature (Waliyar et al., 2013).  
 
 
Seeding and field management 
 
Seedbed preparation was done by ploughing with a tractor-
mounted disc plough followed by levelling using a disc harrow. 
Seeding was done on a flat seedbed in 5 cm-deep planting holes 
made using a hand-hoe. The recommended seeding rate for each 
cultivar was followed. The fields were kept weed, pest and disease-
free throughout the growing season. Weeds were uprooted by hand 
or dug-out using a hoe just as soon as they appeared. Appropriate 
pesticides and fungicides were sprayed regularly to control pests 
and fungal infections, respectively.  
 
 
Harvesting and determination of pod-yield 
 
Harvesting of peanut pods was done at physiological maturity. 
Plants were dug out using a hand hoe. Pod yield was determined 
by counting grain-filled pods from each of the 6 randomly selected 
plants from the middle plant rows of each experimental plot. The 
pods were then dried in an electric vacuum oven (Hereanus, 
Germany) set at 45°C to a gravimetric moisture content of 10%. 
The dried pods were then shelled by hand and prepared for 
aflatoxin testing. 
 
 
Sampling and aflatoxin analysis 
 
One third of the total kernel yield per treatment constituted the 
laboratory sample. The sample was constituted by aggregating 
several 100 g scoops from a single bulk sample. The bulk sample 
was shaken after each 100 g sub-sample was taken. Duly 
constituted laboratory samples were then ground into fine flour 
using an ordinary kitchen grinder (LM2211BM, Moulinex, China). 
Ground samples were homogenized by thorough shaking. Total 
aflatoxin content in the flour was extracted using 65% ethanol 
reconstituted from an original product (UN1170, Xilong Scientific 
Co., Shantou City, China) with a concentration of 95%. For each 
treatment, three sub-samples each weighing 10.0 g were mixed 
with 30 ml of ethanol and shaken on a rotary shaker (ISO-9001-
2000, Navyug, India) at 120 rpm for 3 min. After shaking, the 
mixture was filtered through Whitman 42 filter paper. Total aflatoxin 
concentration in each sample was determined using Neogen Afla 
Reveal® Q+ aflatoxin kit (Neogen Corporation, USA). The lower 
and upper limits of detection of aflatoxin concentration were 1 and 
50 µg/kg, respectively. All the tested samples had total aflatoxin 
concentrations within detection limits. 
 
 

Statistical analysis 

 
Data  on  pod  yield  and  aflatoxin  content  were  subjected  to  the  
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Table 1. Effects of gypsum on the number of grain-filled pods per plant for each variety. 
 

Site Cultivar 
Gypsum level 

(kg/ha) 

Number of pods per plant ± 
standard error mean 

P-value 

UNZA 

Kadononga 
0 29 ±  3.1 

0.005
a 

400 42 ± 3.2 

    

MGV 4 
0 51 ± 5.9 

0.410 
400 44 ± 4.3 

    

MGV 5 
0 57 ± 3.8 

0.284 
400 65 ± 6.1 

     

KATC 

Kadononga 
0 23 ±  2.2 

0.199 
400 20 ± 1.4 

    

MGV 4 
0 30 ± 2.2 

0.509 
400 28 ± 2.6 

    

MGV 5 
0 26 ± 1.5 

0.006
a 

400 35 ± 2.7 
 
a
Gypsum was associated with higher number of grain-filled pods per plant in selected cases. 

 
 
 
analysis of variance test at 95% confidence interval. The separation 
of statistically significant treatment means was done using Fisher’s 
protected Least Significant Difference. 

 
 
RESULTS AND DISCUSSION 

 
Effects of gypsum on pod-yield in selected peanut 
cultivars 

 
Gypsum applied at flowering stage of peanuts resulted in 
higher number of grain-filled pods only in selected 
cultivars (Table 1). Although gypsum was associated with 
higher number of pods for Kadononga at UNZA, no 
similar result was observed at KATC. Similarly, gypsum 
was associated with a significantly higher number of 
grain-filled pods for MGV 5 at KATC and not at UNZA. 
MGV 4 did not show any response to gypsum at both 
sites. In general, these results are contrary to literature 
(Cox et al., 1976; Jain et al., 2011; Jordan et al., 2014; 
Bairagi et al., 2017) that report higher yields due to 
calcium-containing inputs such as gypsum. According to 
Kabir et al. (2013) peanut plants fertilized with calcium 
inputs recorded higher 100 pod weights compared with 
plants that did not receive a calcium input. As earlier 
noted by Smith et al. (1993) calcium is an essential 
element for pod filling in peanuts and a lack of it is 
reported to cause fruit abortions, resulting in fewer grain-
filled pods. 

According to Cox et al. (1976), peanut response to 
calcium-containing    inputs     is     dependent     on    soil 

characteristics such as the exchangeable calcium content. 
Recommendations must therefore consider soil type and 
in particular the native calcium content at which additional 
amounts would trigger a response. The choice of 400 
kg/ha in the current study was based on the 
recommendation by Waliyar et al. (2013). The poor 
response to gypsum observed in the study suggests that 
the chosen rate of gypsum application may not be 
adequate for the soil types at the two sites. 

The observed result in this study could be attributed to 
the native exchangeable calcium content of the soil at the 
two experimental sites. Although the soil at Kasisi had 
low exchangeable calcium, it was still able to meet the 
calcium requirements for Kadononga and MGV 4. As for 
MGV 5 at the same site, the positive response to gypsum 
input could signify the need for extra calcium for optimal 
growth. In the case of the soil at UNZA that had high 
native exchangeable calcium content, the logical 
expectation would be that the small-kernelled Kadononga 
would not respond to additional calcium, unlike the larger-
kernelled MGV 4 and MGV 5. On the contrary, only the 
small-seeded Kadononga responded, making it difficult to 
attribute the response to gypsum amendment.  

Additionally, differences in plant nutrient and moisture 
requirements between cultivars have an effect on crop 
performance. For instance, small-kernelled peanut 
cultivars have a lower nutrient and soil moisture 
requirement than larger ones (Jordan et al., 2014). Thus, 
if there is a limited supply of nutrients, especially 
exchangeable calcium and plant-available-water in the 
soil,  the  small-kernelled  cultivars  would  grow  normally  
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Figure 1. Total aflatoxin content of peanuts kernels from respective cultivar. Error bars represent 
standard error of the mean. Letters within each data bar indicate statistical significance between 
treatments for each site. 

 
 
 
under given soil conditions while the larger-kernelled 
cultivars would need external inputs.  
 
 
Effect of gypsum and cultivar on total aflatoxin 
content in kernels at harvest 
 
Results from the study showed that the gypsum 
amendment had no effect on total aflatoxin content in 
kernels (p > 0.05). In contrast, other authors such as 
Reding et al. (1993) and Gebreselassie et al. (2014) 
reported decreased aflatoxin content in peanut kernels 
due to gypsum amendment. Nonetheless, there were 
significant differences (p < 0.01) in mean total aflatoxin 
content in the three cultivars (Figure 1). The aflatoxin 
content varied according to kernel size. The cultivar with 
smallest kernel size was the least contaminated. This 
pattern was observed at both experimental sites. The 
mean total aflatoxin concentrations across the two sites 
were 10.1, 10.8 and 12 ppb for Kadononga, MGV 4 and 
MGV 5, respectively, in the same order as their kernel 
size starting with the smallest to the largest. Although the 
aflatoxin contamination in all the cultivars was within the 
permissible limits of less than 15 ppb according to the 
Zambia Bureau of Standards ZS 723 safety standard, the 
result in this study suggests that more effort is needed to 
manage aflatoxin contamination in larger-kernelled 
cultivars than in smaller ones.  

Soil moisture status assessed in terms of mean daily 
rainfall received during the pod-development phase of the 
crop did not show significant differences (p > 0.05) across 
cultivars at each of the two sites. Therefore, the observed 
differences  in   mean   total   aflatoxin   levels  cannot  be 

explained by the moisture status. Reding et al. (1993) 
attributed the reduction in aflatoxin contamination 
following the application of gypsum amendment to 
inherent plant factors. Similarly, results from the current 
study suggest that there could be plant factors such as 
pod strength that may influence aflatoxin contamination. 
According to Waliyar et al. (2013), well-developed mature 
pods tend to be less susceptible to fungal infection and 
subsequent aflatoxin contamination than immature and 
weak pods. In a study involving ten peanut genotypes, it 
was reported that although all the studied cultivars 
supported the growth of Aspergillus flavus, one cultivar 
recorded significantly less aflatoxin contamination (< 20 
ppb) regardless of the amount of fungal accumulation 
(Korani et al., 2017). This result may suggest that some 
peanut genotypes are naturally more resistant to aflatoxin 
contamination than others.  
 
 
Conclusions 
 
Gypsum at the rate of 400 kg/ha did not have a clear 
influence on pod yield and no significant effect on total 
aflatoxin contamination in harvested kernels. However, 
this study showed significant differences in cultivar 
susceptibility to aflatoxin contamination. For the three 
cultivars in the study, results showed a negative 
relationship between pre-harvest aflatoxin content and 
kernel size indicating that inherent factors such as kernel 
size may have a role in determining aflatoxin resistance. 
Further, it can be concluded that management of aflatoxin 
contamination in larger-kernelled cultivars requires more 
effort than in smaller ones.  
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